Spaces:
Runtime error
Runtime error
File size: 10,125 Bytes
cfb7702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import math
import numpy as np
import torch
import torch.nn as nn
import tinycudann as tcnn
from pytorch_lightning.utilities.rank_zero import rank_zero_debug, rank_zero_info
from utils.misc import config_to_primitive, get_rank
from models.utils import get_activation
from systems.utils import update_module_step
class VanillaFrequency(nn.Module):
def __init__(self, in_channels, config):
super().__init__()
self.N_freqs = config['n_frequencies']
self.in_channels, self.n_input_dims = in_channels, in_channels
self.funcs = [torch.sin, torch.cos]
self.freq_bands = 2**torch.linspace(0, self.N_freqs-1, self.N_freqs)
self.n_output_dims = self.in_channels * (len(self.funcs) * self.N_freqs)
self.n_masking_step = config.get('n_masking_step', 0)
self.update_step(None, None) # mask should be updated at the beginning each step
def forward(self, x):
out = []
for freq, mask in zip(self.freq_bands, self.mask):
for func in self.funcs:
out += [func(freq*x) * mask]
return torch.cat(out, -1)
def update_step(self, epoch, global_step):
if self.n_masking_step <= 0 or global_step is None:
self.mask = torch.ones(self.N_freqs, dtype=torch.float32)
else:
self.mask = (1. - torch.cos(math.pi * (global_step / self.n_masking_step * self.N_freqs - torch.arange(0, self.N_freqs)).clamp(0, 1))) / 2.
rank_zero_debug(f'Update mask: {global_step}/{self.n_masking_step} {self.mask}')
class ProgressiveBandHashGrid(nn.Module):
def __init__(self, in_channels, config):
super().__init__()
self.n_input_dims = in_channels
encoding_config = config.copy()
encoding_config['otype'] = 'HashGrid'
with torch.cuda.device(get_rank()):
self.encoding = tcnn.Encoding(in_channels, encoding_config)
self.n_output_dims = self.encoding.n_output_dims
self.n_level = config['n_levels']
self.n_features_per_level = config['n_features_per_level']
self.start_level, self.start_step, self.update_steps = config['start_level'], config['start_step'], config['update_steps']
self.current_level = self.start_level
self.mask = torch.zeros(self.n_level * self.n_features_per_level, dtype=torch.float32, device=get_rank())
def forward(self, x):
enc = self.encoding(x)
enc = enc * self.mask
return enc
def update_step(self, epoch, global_step):
current_level = min(self.start_level + max(global_step - self.start_step, 0) // self.update_steps, self.n_level)
if current_level > self.current_level:
rank_zero_info(f'Update grid level to {current_level}')
self.current_level = current_level
self.mask[:self.current_level * self.n_features_per_level] = 1.
class CompositeEncoding(nn.Module):
def __init__(self, encoding, include_xyz=False, xyz_scale=1., xyz_offset=0.):
super(CompositeEncoding, self).__init__()
self.encoding = encoding
self.include_xyz, self.xyz_scale, self.xyz_offset = include_xyz, xyz_scale, xyz_offset
self.n_output_dims = int(self.include_xyz) * self.encoding.n_input_dims + self.encoding.n_output_dims
def forward(self, x, *args):
return self.encoding(x, *args) if not self.include_xyz else torch.cat([x * self.xyz_scale + self.xyz_offset, self.encoding(x, *args)], dim=-1)
def update_step(self, epoch, global_step):
update_module_step(self.encoding, epoch, global_step)
def get_encoding(n_input_dims, config):
# input suppose to be range [0, 1]
if config.otype == 'VanillaFrequency':
encoding = VanillaFrequency(n_input_dims, config_to_primitive(config))
elif config.otype == 'ProgressiveBandHashGrid':
encoding = ProgressiveBandHashGrid(n_input_dims, config_to_primitive(config))
else:
with torch.cuda.device(get_rank()):
encoding = tcnn.Encoding(n_input_dims, config_to_primitive(config))
encoding = CompositeEncoding(encoding, include_xyz=config.get('include_xyz', False), xyz_scale=2., xyz_offset=-1.)
return encoding
class VanillaMLP(nn.Module):
def __init__(self, dim_in, dim_out, config):
super().__init__()
self.n_neurons, self.n_hidden_layers = config['n_neurons'], config['n_hidden_layers']
self.sphere_init, self.weight_norm = config.get('sphere_init', False), config.get('weight_norm', False)
self.sphere_init_radius = config.get('sphere_init_radius', 0.5)
self.layers = [self.make_linear(dim_in, self.n_neurons, is_first=True, is_last=False), self.make_activation()]
for i in range(self.n_hidden_layers - 1):
self.layers += [self.make_linear(self.n_neurons, self.n_neurons, is_first=False, is_last=False), self.make_activation()]
self.layers += [self.make_linear(self.n_neurons, dim_out, is_first=False, is_last=True)]
self.layers = nn.Sequential(*self.layers)
self.output_activation = get_activation(config['output_activation'])
@torch.cuda.amp.autocast(False)
def forward(self, x):
x = self.layers(x.float())
x = self.output_activation(x)
return x
def make_linear(self, dim_in, dim_out, is_first, is_last):
layer = nn.Linear(dim_in, dim_out, bias=True) # network without bias will degrade quality
if self.sphere_init:
if is_last:
torch.nn.init.constant_(layer.bias, -self.sphere_init_radius)
torch.nn.init.normal_(layer.weight, mean=math.sqrt(math.pi) / math.sqrt(dim_in), std=0.0001)
elif is_first:
torch.nn.init.constant_(layer.bias, 0.0)
torch.nn.init.constant_(layer.weight[:, 3:], 0.0)
torch.nn.init.normal_(layer.weight[:, :3], 0.0, math.sqrt(2) / math.sqrt(dim_out))
else:
torch.nn.init.constant_(layer.bias, 0.0)
torch.nn.init.normal_(layer.weight, 0.0, math.sqrt(2) / math.sqrt(dim_out))
else:
torch.nn.init.constant_(layer.bias, 0.0)
torch.nn.init.kaiming_uniform_(layer.weight, nonlinearity='relu')
if self.weight_norm:
layer = nn.utils.weight_norm(layer)
return layer
def make_activation(self):
if self.sphere_init:
return nn.Softplus(beta=100)
else:
return nn.ReLU(inplace=True)
def sphere_init_tcnn_network(n_input_dims, n_output_dims, config, network):
rank_zero_debug('Initialize tcnn MLP to approximately represent a sphere.')
"""
from https://github.com/NVlabs/tiny-cuda-nn/issues/96
It's the weight matrices of each layer laid out in row-major order and then concatenated.
Notably: inputs and output dimensions are padded to multiples of 8 (CutlassMLP) or 16 (FullyFusedMLP).
The padded input dimensions get a constant value of 1.0,
whereas the padded output dimensions are simply ignored,
so the weights pertaining to those can have any value.
"""
padto = 16 if config.otype == 'FullyFusedMLP' else 8
n_input_dims = n_input_dims + (padto - n_input_dims % padto) % padto
n_output_dims = n_output_dims + (padto - n_output_dims % padto) % padto
data = list(network.parameters())[0].data
assert data.shape[0] == (n_input_dims + n_output_dims) * config.n_neurons + (config.n_hidden_layers - 1) * config.n_neurons**2
new_data = []
# first layer
weight = torch.zeros((config.n_neurons, n_input_dims)).to(data)
torch.nn.init.constant_(weight[:, 3:], 0.0)
torch.nn.init.normal_(weight[:, :3], 0.0, math.sqrt(2) / math.sqrt(config.n_neurons))
new_data.append(weight.flatten())
# hidden layers
for i in range(config.n_hidden_layers - 1):
weight = torch.zeros((config.n_neurons, config.n_neurons)).to(data)
torch.nn.init.normal_(weight, 0.0, math.sqrt(2) / math.sqrt(config.n_neurons))
new_data.append(weight.flatten())
# last layer
weight = torch.zeros((n_output_dims, config.n_neurons)).to(data)
torch.nn.init.normal_(weight, mean=math.sqrt(math.pi) / math.sqrt(config.n_neurons), std=0.0001)
new_data.append(weight.flatten())
new_data = torch.cat(new_data)
data.copy_(new_data)
def get_mlp(n_input_dims, n_output_dims, config):
if config.otype == 'VanillaMLP':
network = VanillaMLP(n_input_dims, n_output_dims, config_to_primitive(config))
else:
with torch.cuda.device(get_rank()):
network = tcnn.Network(n_input_dims, n_output_dims, config_to_primitive(config))
if config.get('sphere_init', False):
sphere_init_tcnn_network(n_input_dims, n_output_dims, config, network)
return network
class EncodingWithNetwork(nn.Module):
def __init__(self, encoding, network):
super().__init__()
self.encoding, self.network = encoding, network
def forward(self, x):
return self.network(self.encoding(x))
def update_step(self, epoch, global_step):
update_module_step(self.encoding, epoch, global_step)
update_module_step(self.network, epoch, global_step)
def get_encoding_with_network(n_input_dims, n_output_dims, encoding_config, network_config):
# input suppose to be range [0, 1]
if encoding_config.otype in ['VanillaFrequency', 'ProgressiveBandHashGrid'] \
or network_config.otype in ['VanillaMLP']:
encoding = get_encoding(n_input_dims, encoding_config)
network = get_mlp(encoding.n_output_dims, n_output_dims, network_config)
encoding_with_network = EncodingWithNetwork(encoding, network)
else:
with torch.cuda.device(get_rank()):
encoding_with_network = tcnn.NetworkWithInputEncoding(
n_input_dims=n_input_dims,
n_output_dims=n_output_dims,
encoding_config=config_to_primitive(encoding_config),
network_config=config_to_primitive(network_config)
)
return encoding_with_network
|