Spaces:
Runtime error
Runtime error
File size: 16,058 Bytes
cfb7702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import os
import sys
from PIL import Image
from typing import NamedTuple
from scene.colmap_loader import (
read_extrinsics_text,
read_intrinsics_text,
qvec2rotmat,
read_extrinsics_binary,
read_intrinsics_binary,
read_points3D_binary,
read_points3D_text,
)
from utils.graphics_utils import getWorld2View2, focal2fov, fov2focal
from utils.camera_utils import get_uniform_poses
import numpy as np
import json
from pathlib import Path
from plyfile import PlyData, PlyElement
from utils.sh_utils import SH2RGB
from scene.gaussian_model import BasicPointCloud
from scene.cameras import Camera
import torch
import rembg
import mcubes
import trimesh
class CameraInfo(NamedTuple):
uid: int
R: np.array
T: np.array
FovY: np.array
FovX: np.array
image: np.array
image_path: str
image_name: str
width: int
height: int
class SceneInfo(NamedTuple):
point_cloud: BasicPointCloud
train_cameras: list
test_cameras: list
nerf_normalization: dict
ply_path: str
def getNerfppNorm(cam_info):
def get_center_and_diag(cam_centers):
cam_centers = np.hstack(cam_centers)
avg_cam_center = np.mean(cam_centers, axis=1, keepdims=True)
center = avg_cam_center
dist = np.linalg.norm(cam_centers - center, axis=0, keepdims=True)
diagonal = np.max(dist)
return center.flatten(), diagonal
cam_centers = []
for cam in cam_info:
W2C = getWorld2View2(cam.R, cam.T)
C2W = np.linalg.inv(W2C)
cam_centers.append(C2W[:3, 3:4])
center, diagonal = get_center_and_diag(cam_centers)
radius = diagonal * 1.1
translate = -center
return {"translate": translate, "radius": radius}
def readColmapCameras(cam_extrinsics, cam_intrinsics, images_folder):
cam_infos = []
for idx, key in enumerate(cam_extrinsics):
sys.stdout.write("\r")
# the exact output you're looking for:
sys.stdout.write("Reading camera {}/{}".format(idx + 1, len(cam_extrinsics)))
sys.stdout.flush()
extr = cam_extrinsics[key]
intr = cam_intrinsics[extr.camera_id]
height = intr.height
width = intr.width
uid = intr.id
R = np.transpose(qvec2rotmat(extr.qvec))
T = np.array(extr.tvec)
if intr.model == "SIMPLE_PINHOLE":
focal_length_x = intr.params[0]
FovY = focal2fov(focal_length_x, height)
FovX = focal2fov(focal_length_x, width)
elif intr.model == "PINHOLE":
focal_length_x = intr.params[0]
focal_length_y = intr.params[1]
FovY = focal2fov(focal_length_y, height)
FovX = focal2fov(focal_length_x, width)
else:
assert (
False
), "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!"
image_path = os.path.join(images_folder, os.path.basename(extr.name))
image_name = os.path.basename(image_path).split(".")[0]
image = Image.open(image_path)
cam_info = CameraInfo(
uid=uid,
R=R,
T=T,
FovY=FovY,
FovX=FovX,
image=image,
image_path=image_path,
image_name=image_name,
width=width,
height=height,
)
cam_infos.append(cam_info)
sys.stdout.write("\n")
return cam_infos
def fetchPly(path):
plydata = PlyData.read(path)
vertices = plydata["vertex"]
positions = np.vstack([vertices["x"], vertices["y"], vertices["z"]]).T
colors = np.vstack([vertices["red"], vertices["green"], vertices["blue"]]).T / 255.0
normals = np.vstack([vertices["nx"], vertices["ny"], vertices["nz"]]).T
return BasicPointCloud(points=positions, colors=colors, normals=normals)
def storePly(path, xyz, rgb):
# Define the dtype for the structured array
dtype = [
("x", "f4"),
("y", "f4"),
("z", "f4"),
("nx", "f4"),
("ny", "f4"),
("nz", "f4"),
("red", "u1"),
("green", "u1"),
("blue", "u1"),
]
normals = np.zeros_like(xyz)
elements = np.empty(xyz.shape[0], dtype=dtype)
attributes = np.concatenate((xyz, normals, rgb), axis=1)
elements[:] = list(map(tuple, attributes))
# Create the PlyData object and write to file
vertex_element = PlyElement.describe(elements, "vertex")
ply_data = PlyData([vertex_element])
ply_data.write(path)
def readColmapSceneInfo(path, images, eval, llffhold=8):
try:
cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.bin")
cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.bin")
cam_extrinsics = read_extrinsics_binary(cameras_extrinsic_file)
cam_intrinsics = read_intrinsics_binary(cameras_intrinsic_file)
except:
cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.txt")
cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.txt")
cam_extrinsics = read_extrinsics_text(cameras_extrinsic_file)
cam_intrinsics = read_intrinsics_text(cameras_intrinsic_file)
reading_dir = "images" if images == None else images
cam_infos_unsorted = readColmapCameras(
cam_extrinsics=cam_extrinsics,
cam_intrinsics=cam_intrinsics,
images_folder=os.path.join(path, reading_dir),
)
cam_infos = sorted(cam_infos_unsorted.copy(), key=lambda x: x.image_name)
if eval:
train_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold != 0]
test_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold == 0]
else:
train_cam_infos = cam_infos
test_cam_infos = []
nerf_normalization = getNerfppNorm(train_cam_infos)
ply_path = os.path.join(path, "sparse/0/points3D.ply")
bin_path = os.path.join(path, "sparse/0/points3D.bin")
txt_path = os.path.join(path, "sparse/0/points3D.txt")
if not os.path.exists(ply_path):
print(
"Converting point3d.bin to .ply, will happen only the first time you open the scene."
)
try:
xyz, rgb, _ = read_points3D_binary(bin_path)
except:
xyz, rgb, _ = read_points3D_text(txt_path)
storePly(ply_path, xyz, rgb)
try:
pcd = fetchPly(ply_path)
except:
pcd = None
scene_info = SceneInfo(
point_cloud=pcd,
train_cameras=train_cam_infos,
test_cameras=test_cam_infos,
nerf_normalization=nerf_normalization,
ply_path=ply_path,
)
return scene_info
def readCamerasFromTransforms(path, transformsfile, white_background, extension=".png"):
cam_infos = []
with open(os.path.join(path, transformsfile)) as json_file:
contents = json.load(json_file)
fovx = contents["camera_angle_x"]
frames = contents["frames"]
for idx, frame in enumerate(frames):
cam_name = os.path.join(path, frame["file_path"] + extension)
# NeRF 'transform_matrix' is a camera-to-world transform
c2w = np.array(frame["transform_matrix"])
# change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward)
c2w[:3, 1:3] *= -1
# get the world-to-camera transform and set R, T
w2c = np.linalg.inv(c2w)
R = np.transpose(
w2c[:3, :3]
) # R is stored transposed due to 'glm' in CUDA code
T = w2c[:3, 3]
image_path = os.path.join(path, cam_name)
image_name = Path(cam_name).stem
image = Image.open(image_path)
im_data = np.array(image.convert("RGBA"))
bg = np.array([1, 1, 1]) if white_background else np.array([0, 0, 0])
norm_data = im_data / 255.0
if norm_data.shape[-1] != 3:
arr = norm_data[:, :, :3] * norm_data[:, :, 3:4] + bg * (
1 - norm_data[:, :, 3:4]
)
image = Image.fromarray(np.array(arr * 255.0, dtype=np.byte), "RGB")
fovy = focal2fov(fov2focal(fovx, image.size[0]), image.size[1])
FovY = fovy
FovX = fovx
cam_infos.append(
CameraInfo(
uid=idx,
R=R,
T=T,
FovY=FovY,
FovX=FovX,
image=image,
image_path=image_path,
image_name=image_name,
width=image.size[0],
height=image.size[1],
)
)
return cam_infos
def uniform_surface_sampling_from_vertices_and_faces(
vertices, faces, num_points: int
) -> torch.Tensor:
"""
Uniformly sample points from the surface of a mesh.
Args:
vertices (torch.Tensor): Vertices of the mesh.
faces (torch.Tensor): Faces of the mesh.
num_points (int): Number of points to sample.
Returns:
torch.Tensor: Points sampled from the surface of the mesh.
"""
mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
n = num_points
points = []
while n > 0:
p, _ = trimesh.sample.sample_surface_even(mesh, n)
n -= p.shape[0]
if n >= 0:
points.append(p)
else:
points.append(p[:n])
if len(points) > 1:
points = np.concatenate(points, axis=0)
else:
points = points[0]
points = torch.from_numpy(points.astype(np.float32))
return points, torch.rand_like(points)
def occ_from_sparse_initialize(poses, images, cameras, grid_reso, num_points):
# fov is in degrees
this_session = rembg.new_session()
imgs = [rembg.remove(im, session=this_session) for im in images]
reso = grid_reso
occ_grid = torch.ones((reso, reso, reso), dtype=torch.bool, device="cuda")
c2ws = poses
center = c2ws[..., :3, 3].mean(axis=0)
radius = np.linalg.norm(c2ws[..., :3, 3] - center, axis=-1).mean()
xx, yy, zz = torch.meshgrid(
torch.linspace(-radius, radius, reso, device="cuda"),
torch.linspace(-radius, radius, reso, device="cuda"),
torch.linspace(-radius, radius, reso, device="cuda"),
indexing="ij",
)
print("radius", radius)
# xyz_grid = torch.stack((xx.flatten(), yy.flatten(), zz.flatten()), dim=-1)
ww = torch.ones((reso, reso, reso), dtype=torch.float32, device="cuda")
xyzw_grid = torch.stack((xx, yy, zz, ww), dim=-1)
xyzw_grid[..., :3] += torch.from_numpy(center).cuda()
c2ws = torch.tensor(c2ws, dtype=torch.float32)
for c2w, camera, img in zip(c2ws, cameras, imgs):
img = np.asarray(img)
alpha = img[..., 3].astype(np.float32) / 255.0
is_foreground = alpha > 0.05
is_foreground = torch.from_numpy(is_foreground).cuda()
full_proj_mtx = Camera(
colmap_id=camera.uid,
R=camera.R,
T=camera.T,
FoVx=camera.FovX,
FoVy=camera.FovY,
image=torch.randn(3, 10, 10),
gt_alpha_mask=None,
image_name="no",
uid=0,
data_device="cuda",
).full_proj_transform
# check the scale
ij = xyzw_grid @ full_proj_mtx
ij = (ij + 1) / 2.0
h, w = img.shape[:2]
ij = ij[..., :2] * torch.tensor([w, h], dtype=torch.float32, device="cuda")
ij = (
ij.clamp(
min=torch.tensor([0.0, 0.0], device="cuda"),
max=torch.tensor([w - 1, h - 1], dtype=torch.float32, device="cuda"),
)
.to(torch.long)
.cuda()
)
occ_grid = torch.logical_and(occ_grid, is_foreground[ij[..., 1], ij[..., 0]])
# To mesh
occ_grid = occ_grid.to(torch.float32).cpu().numpy()
vertices, triangles = mcubes.marching_cubes(occ_grid, 0.5)
# vertices = (vertices / reso - 0.5) * radius * 2 + center
# vertices = (vertices / (reso - 1.0) - 0.5) * radius * 2 * 2 + center
vertices = vertices / (grid_reso - 1) * 2 - 1
vertices = vertices * radius + center
# mcubes.export_obj(vertices, triangles, "./tmp/occ_voxel.obj")
xyz, rgb = uniform_surface_sampling_from_vertices_and_faces(
vertices, triangles, num_points
)
return xyz
def readNerfSyntheticInfo(path, white_background, eval, extension=".png"):
print("Reading Training Transforms")
train_cam_infos = readCamerasFromTransforms(
path, "transforms_train.json", white_background, extension
)
print("Reading Test Transforms")
test_cam_infos = readCamerasFromTransforms(
path, "transforms_test.json", white_background, extension
)
if not eval:
train_cam_infos.extend(test_cam_infos)
test_cam_infos = []
nerf_normalization = getNerfppNorm(train_cam_infos)
ply_path = os.path.join(path, "points3d.ply")
if not os.path.exists(ply_path):
# Since this data set has no colmap data, we start with random points
num_pts = 100_000
print(f"Generating random point cloud ({num_pts})...")
# We create random points inside the bounds of the synthetic Blender scenes
xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3
shs = np.random.random((num_pts, 3)) / 255.0
pcd = BasicPointCloud(
points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3))
)
storePly(ply_path, xyz, SH2RGB(shs) * 255)
try:
pcd = fetchPly(ply_path)
except:
pcd = None
scene_info = SceneInfo(
point_cloud=pcd,
train_cameras=train_cam_infos,
test_cameras=test_cam_infos,
nerf_normalization=nerf_normalization,
ply_path=ply_path,
)
return scene_info
def constructVideoNVSInfo(
num_frames,
radius,
elevation,
fov,
reso,
images,
masks,
num_pts=100_000,
train=True,
):
poses = get_uniform_poses(num_frames, radius, elevation)
w2cs = np.linalg.inv(poses)
train_cam_infos = []
for idx, pose in enumerate(w2cs):
train_cam_infos.append(
CameraInfo(
uid=idx,
R=np.transpose(pose[:3, :3]),
T=pose[:3, 3],
FovY=np.deg2rad(fov),
FovX=np.deg2rad(fov),
image=images[idx],
image_path=None,
image_name=idx,
width=reso,
height=reso,
)
)
nerf_normalization = getNerfppNorm(train_cam_infos)
# xyz = np.random.random((num_pts, 3)) * radius / 3 - radius / 3
xyz = np.random.randn(num_pts, 3) * radius / 16
# if len(poses) <= 24:
# xyz = occ_from_sparse_initialize(poses, images, train_cam_infos, 256, num_pts)
# num_pts = xyz.shape[0]
# else:
# xyz = np.random.randn(num_pts, 3) * radius / 16
xyz = np.random.randn(num_pts, 3) * radius / 16
# shs = np.random.random((num_pts, 3)) / 255.0
shs = np.ones((num_pts, 3)) * 0.2
pcd = BasicPointCloud(
points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3))
)
ply_path = "./tmp/points3d.ply"
storePly(ply_path, xyz, SH2RGB(shs) * 255)
pcd = fetchPly(ply_path)
scene_info = SceneInfo(
point_cloud=pcd,
train_cameras=train_cam_infos,
test_cameras=[],
nerf_normalization=nerf_normalization,
ply_path="./tmp/points3d.ply",
)
return scene_info
sceneLoadTypeCallbacks = {
"Colmap": readColmapSceneInfo,
"Blender": readNerfSyntheticInfo,
"VideoNVS": constructVideoNVSInfo,
}
|