Spaces:
Running
Running
File size: 19,450 Bytes
6dcd21a aa62e7a 6dcd21a 38048a8 6dcd21a 6002e75 38048a8 6dcd21a 76dcb13 6dcd21a e23eec1 6dcd21a da783e2 7c6e2c9 e2db749 6dcd21a da783e2 6002e75 da783e2 6dcd21a e2db749 3e9c9d3 6dcd21a e2db749 6dcd21a 352844a df9435f e2db749 38048a8 6dcd21a a7e72ad 6dcd21a d4daf82 6dcd21a 6002e75 6dcd21a 76dcb13 da783e2 6002e75 6dcd21a 76dcb13 6dcd21a 76dcb13 6dcd21a 7c6e2c9 6dcd21a 7c6e2c9 b3244f7 6dcd21a 3e1958f 6dcd21a 76dcb13 6dcd21a 76dcb13 6dcd21a aa62e7a 6dcd21a aa62e7a 6dcd21a 76dcb13 6002e75 76dcb13 11ade97 76dcb13 5bd03e5 6002e75 6dcd21a a8f88e2 603bc6b 6dcd21a 76dcb13 6dcd21a c8b6b34 da783e2 aa62e7a 6dcd21a 76dcb13 6dcd21a 76dcb13 6dcd21a 76dcb13 6dcd21a 76dcb13 6dcd21a 64bdcb7 6dcd21a 76dcb13 603bc6b 6dcd21a 76dcb13 6dcd21a 76dcb13 6dcd21a 38048a8 6dcd21a 1e2979d d4daf82 6dcd21a df25442 6dcd21a df25442 e23eec1 6dcd21a 4096aec 6dcd21a 4096aec 6dcd21a 4096aec 6dcd21a 76dcb13 da783e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
# -*- coding: utf-8 -*-
import re, unicodedata, warnings, branca, folium, gradio as gr
import pandas as pd, geopandas as gpd, numpy as np
from pandas.api.types import is_datetime64_any_dtype
from shapely.geometry import Point
from folium.plugins import HeatMap
from sklearn.cluster import DBSCAN
import plotly.express as px
warnings.filterwarnings("ignore")
# βββββββββββββββββββ helpers βββββββββββββββββββ
norm = lambda t: unicodedata.normalize("NFKD", t).encode("ascii", "ignore").decode()
snake = lambda cols: [re.sub(r"[^\w]+", "_", norm(c).strip().lower()).strip("_") for c in cols]
sin_dato = lambda s: s.fillna("Sin dato").replace("", "Sin dato")
NUM_VARS = ["edad", "creatinina"]
ENV_VARS_GRAFICOS = ["PM2.5", "Ozono", "Temperatura", "PrecipitaciΓ³n", "Viento"]
# βββββββββββββββββββ rutas βββββββββββββββββββββ
DATA_XLSX = "VasculitisAsociadasA-Bdd3_DATA_LABELS_2025-04-16_1949 (1).xlsx"
LOCALIDADES = "loca.json"
GEO_AMBIENTALES = {
"PM10": "pm10_prom_anual.geojson",
"PM2.5": "pm25_prom_anual_2023 (2).geojson",
"Ozono": "ozono_prom_anual_2022 (2).geojson",
"Temperatura": "temp_anualprom_2023 (2).geojson",
"PrecipitaciΓ³n": "precip_anualacum_2023 (2).geojson",
"Viento": "vel_viento_0_23h_anual_2023.geojson",
"WQI": "tramo_wqi.geojson",
"Heatmap pacientes": None
}
# βββββββββββ mapa variables βββββββββββ
META_CAPAS = {
"PM10": ("conc_pm10", "Β΅g/mΒ³", branca.colormap.linear.OrRd_09, "id", "Zona"),
"PM2.5": ("conc_pm25", "Β΅g/mΒ³", branca.colormap.linear.Reds_09, "id", "Zona"),
"Ozono": ("conc_ozono", "ppb", branca.colormap.linear.PuBuGn_09, "id", "Zona"),
"Temperatura": ("temperatur","Β°C", branca.colormap.linear.YlOrBr_09, "id", "Zona"),
"PrecipitaciΓ³n":("precip_per","mm", branca.colormap.linear.Blues_09, "id", "Zona"),
"Viento": ("velocidad", "m/s", branca.colormap.linear.GnBu_09, "id", "Zona"),
"WQI": ("wqi_val", "", None, "tramo", "Tramo")
}
ANT_COLS_HUMAN = {
"Diabetes": "antecedente_personal_de_diabetes",
"Falla cardΓaca": "antecedente_personal_de_falla_cardiaca",
"EPOC": "antecedente_personal_de_epoc",
"HipertensiΓ³n": "antecedente_personal_de_hipertension_arterial",
"VIH": "antecedente_personal_de_vih",
"Enf. autoinmune": "antecedente_personal_de_otra_enfermedad_autoinmune",
"CΓ‘ncer": "antecedente_personal_de_cancer"
}
DISPLAY_MAP = {"Localidad": "localidad",
"Estrato": "estrato_socioeconomico_cat",
"Hallazgo Biopsia": "biopsia_patron_str",
**ANT_COLS_HUMAN}
_resolve = lambda v: DISPLAY_MAP.get(v, v)
# βββββββββββ pacientes βββββββββββ
df_all = pd.read_excel(DATA_XLSX, dtype=str)
df_all.columns = snake(df_all.columns)
lat_col = next(c for c in df_all.columns if "residencia" in c and "latitud" in c)
lon_col = next(c for c in df_all.columns if "residencia" in c and "longitud" in c)
df_all = df_all.rename(columns={lat_col: "latitud_raw", lon_col: "longitud_raw"})
df_all["latitud"] = pd.to_numeric(df_all["latitud_raw"].str.replace(",", "."), errors="coerce")
df_all["longitud"] = pd.to_numeric(df_all["longitud_raw"].str.replace(",", "."), errors="coerce")
for col in ("genero", "estrato_socioeconomico"):
df_all[f"{col}_cat"] = sin_dato(df_all.get(col))
bins = list(range(0, 105, 5))
age_labels = [f"{b}-{b+4}" for b in bins[:-1]]
df_all["edad"] = pd.to_numeric(df_all.get("edad_en_anos_del_paciente").str.replace(",", "."), errors="coerce")
df_all["edad_cat"] = pd.Categorical(
sin_dato(pd.cut(df_all["edad"], bins=bins, labels=age_labels, right=False).astype(str)),
categories=age_labels + ["Sin dato"], ordered=True)
for col in ("ancas", "mpo", "pr3"):
df_all[f"{col.split('s')[0]}_cat"] = sin_dato(df_all.get(col))
clin_cols = {
"sindrome_renal": "sindrome_renal_al_ingreso",
"manifestaciones_extrarenales": "manifestaciones_extrarenales",
"proteinuria": "proteinuria",
}
for dst, src in clin_cols.items():
df_all[dst] = sin_dato(df_all.get(src)).str.capitalize()
df_all["creatinina"] = pd.to_numeric(df_all.get("creatinina").str.replace(",", "."), errors="coerce")
for k, col in ANT_COLS_HUMAN.items():
if col in df_all.columns:
vals = df_all[col].astype(str).str.lower()
df_all[col] = np.where(vals.isin(["si", "sΓ", "checked", "1", "positivo"]),
"Positivo", "Negativo")
else:
df_all[col] = "Negativo"
bio_raw = [c for c in df_all.columns if c.startswith("hallazgos_histologicos_en_biopsia")]
ren_bio = {c: f"bio_{i}" for i, c in enumerate(bio_raw, 1)}
df_all = df_all.rename(columns=ren_bio)
BIO_REGEX = [
(r"sin_alteraciones$", "Sin alteraciones"),
(r"sin_proliferacion_extracapilar", "Necrosis sin PC"),
(r"menos_del_50.*focal", "Focal"),
(r"clase_mixta", "Mixta"),
(r"mas_del_50.*cresc", "CrescΓ©ntica"),
(r"sin_compromiso_glomerular$", "Vasculitis sin glom."),
(r"con_compromiso_glomerular$", "Vasculitis + glom."),
(r"sin_dato$", "Sin dato")
]
raw2short = {next(r for r in bio_raw if re.search(p, r)): s for p, s in BIO_REGEX}
def hallar(r):
return [raw2short[raw] for raw, flag in ren_bio.items()
if str(r[flag]).strip().lower() in ("si", "sΓ", "checked", "1", "positivo")] or ["Sin dato"]
df_all["biopsia_patrones"] = df_all.apply(hallar, axis=1)
df_all["biopsia_patron_str"] = df_all["biopsia_patrones"].apply("; ".join)
df_all["biopsia_positiva"] = np.where(df_all["biopsia_patron_str"] == "Sin dato", "Negativo", "Positivo")
# βββββββββββ localidades βββββββββββ
geo_loc = gpd.read_file(LOCALIDADES).to_crs(4326)
geo_loc.columns = snake(geo_loc.columns)
geo_loc = geo_loc.rename(columns={"locnombre": "localidad"})
geo_loc["localidad"] = geo_loc["localidad"].str.upper()
geom_pts = df_all.dropna(subset=["latitud", "longitud"]).copy()
geom_pts["geometry"] = [Point(xy) for xy in zip(geom_pts["longitud"], geom_pts["latitud"])]
geom_pts = gpd.GeoDataFrame(geom_pts, geometry="geometry", crs=4326)
geom_pts = gpd.sjoin(geom_pts, geo_loc[["localidad", "geometry"]], how="left", predicate="within").drop(columns="index_right")
df_all = df_all.merge(geom_pts[["localidad"]], left_index=True, right_index=True, how="left")
# βββββββββββ capas βββββββββββ
def load_gjson(pth):
g = gpd.read_file(pth).to_crs(4326)
g.columns = snake(g.columns)
for c in g.columns:
if g[c].dtype == object:
g[c] = pd.to_numeric(g[c].str.strip(), errors="ignore")
if is_datetime64_any_dtype(g[c]):
g[c] = g[c].astype(str)
return g
caps_base = {k: load_gjson(v) for k, v in GEO_AMBIENTALES.items() if v}
wqi_bins = [0, 20, 35, 50, 70, 100]
wqi_labels = ["Pobre", "Marginal", "Regular", "Buena", "Excelente"]
g_wqi = caps_base["WQI"].copy()
g_wqi["wqi_val"] = pd.to_numeric(g_wqi["wqi"], errors="coerce")
g_wqi["wqi_cat"] = pd.cut(g_wqi["wqi_val"], bins=wqi_bins, labels=wqi_labels, include_lowest=True)
wqi_cmap = branca.colormap.StepColormap(colors=["red", "olive", "purple", "green", "blue"] ,index=wqi_bins,vmin=wqi_bins[0],
vmax=wqi_bins[-1],caption="WQI")
caps_base["WQI"] = g_wqi
META_CAPAS["WQI"] = META_CAPAS["WQI"][:2] + (wqi_cmap,) + META_CAPAS["WQI"][3:]
# Los demΓ‘s bloques (filtros, grΓ‘ficos, mapa, interfaz) siguen idΓ©nticos. ΒΏTe los incluyo tambiΓ©n?
# βββββββββββ filtros βββββββββββ
def filtrar(d, gen, edades, locs, renal, ants, bios, anca, mpo, pr3):
d2 = d.copy()
if gen != "Todos": d2 = d2[d2["genero_cat"] == gen]
if edades: d2 = d2[d2["edad_cat"].isin(edades)]
if locs: d2 = d2[d2["localidad"].fillna("Sin dato").isin(locs)]
if renal != "Todos": d2 = d2[d2["biopsia_positiva"] == renal]
if bios and bios != ["Todos"]:
d2 = d2[d2["biopsia_patrones"].apply(lambda lst: any(p in lst for p in bios))]
if anca != "Todos": d2 = d2[d2["anca_cat"] == anca]
if mpo != "Todos": d2 = d2[d2["mpo_cat"] == mpo]
if pr3 != "Todos": d2 = d2[d2["pr3_cat"] == pr3]
for ant in ants:
if ant == "Todos": continue
col = ANT_COLS_HUMAN[ant]
d2 = d2[d2[col] == "Positivo"]
return d2
# βββββββββββ conteos dinΓ‘micos βββββββββββ
def capas_conteos(pts):
caps = {}
for capa, g0 in caps_base.items():
if capa in ("Heatmap pacientes", "WQI"):
caps[capa] = g0
continue
g = g0.copy()
g["pacientes"] = 0
join = gpd.sjoin(pts[["geometry"]], g, how="left", predicate="within")
counts = join["index_right"].value_counts()
g.loc[counts.index, "pacientes"] = counts.values
caps[capa] = g
return caps
# βββββββββββ helpers grΓ‘ficos βββββββββββ
def prep_pts(d):
d2 = d.dropna(subset=["latitud", "longitud"]).copy()
d2["geometry"] = gpd.points_from_xy(d2["longitud"].astype(float),
d2["latitud"].astype(float), crs=4326)
return gpd.GeoDataFrame(d2, geometry="geometry", crs=4326)
def env_series(var, pts):
g = capas_conteos(pts)[var]
val, uni, *_ = META_CAPAS[var]
join = gpd.sjoin(pts[["geometry"]], g[["geometry", val]], how="left", predicate="within")
def fmt(r):
if pd.isna(r[val]): return "Sin dato"
try:
v = float(r[val])
return f"Zona {int(r['index_right'])} ({v:.1f} {uni})"
except Exception:
return str(r[val])
ser = join.apply(fmt, axis=1)
ser.index = join.index
return ser
def env_df(var, pts):
g = capas_conteos(pts)[var]
val, uni, *_ = META_CAPAS[var]
g["zona"] = g.apply(lambda r: f"Zona {int(r['id'])} ({r[val]:.1f} {uni})", axis=1)
return g[["zona", "pacientes"]]
is_num = lambda v: v in NUM_VARS
# βββββββββββ grΓ‘ficos univariados βββββββββββ
def g_uni(v, d):
col = _resolve(v)
if v in ENV_VARS_GRAFICOS:
df = env_df(v, prep_pts(d)).sort_values("zona")
return px.bar(df, x="zona", y="pacientes", text_auto=True, title=v,
labels={"zona": "Zona", "pacientes": "Pacientes"})
if v == "Localidad":
s = d[col].fillna("Sin dato")
return px.histogram(s, x=s, category_orders={s.name: sorted(s.unique())},
text_auto=True, title="Localidad")
if is_num(col):
return px.histogram(d, x=col, nbins=20, title=v)
order = sorted(d[col].astype(str).unique())
return px.histogram(d, x=col, category_orders={col: order},
text_auto=True, title=v)
# βββββββββββ grΓ‘ficos bivariados βββββββββββ
def g_bi(x, y, d):
x_col = _resolve(x)
y_col = _resolve(y)
pts = prep_pts(d)
if x in ENV_VARS_GRAFICOS: d = d.assign(**{x: env_series(x, pts)})
if y in ENV_VARS_GRAFICOS: d = d.assign(**{y: env_series(y, pts)})
num_x, num_y = is_num(x_col), is_num(y_col)
if not num_x and not num_y:
ord_x = sorted(map(str, d[x_col].unique()))
ord_y = sorted(map(str, d[y_col].unique()))
return px.histogram(d, x=x_col, color=y_col, barmode="group",
category_orders={x_col: ord_x, y_col: ord_y},
title=f"{x} vs {y}")
if num_x and not num_y:
return px.box(d, x=y_col, y=x_col, points="all", title=f"{x} vs {y}")
if not num_x and num_y:
return px.box(d, x=x_col, y=y_col, points="all", title=f"{x} vs {y}")
return px.scatter(d, x=x_col, y=y_col, title=f"{x} vs {y}")
# βββββββββββ pop-up de paciente βββββββββββ
def popup(r):
lab = lambda k: f"<b>{k}:</b> Positivo<br>" if r.get(f"{k.lower()}_cat", "").lower() == "positivo" else ""
edad = f"{int(r['edad'])} aΓ±os" if pd.notna(r['edad']) else "Sin dato edad"
ants = "; ".join(lbl for lbl, col in ANT_COLS_HUMAN.items() if r.get(col) == "Positivo") or "Ninguno"
return (f"<b>Localidad:</b> {r['localidad']}<br>"
f"<b>Edad:</b> {edad}<br>"
f"<b>GΓ©nero:</b> {r['genero_cat']}<br>"
f"{lab('ANCA')}{lab('MPO')}{lab('PR3')}"
f"<b>Biopsia:</b> {'; '.join(r['biopsia_patrones'])}<br>"
f"<b>Antecedentes:</b> {ants}")
# βββββββββββ choropleth βββββββββββ
def choropleth(m, g, val, title, cmap, zfield, zalias):
g = g.copy()
g[val] = pd.to_numeric(g[val], errors="coerce")
for c in g.columns:
if is_datetime64_any_dtype(g[c]):
g[c] = g[c].astype(str)
cm = cmap.scale(g[val].min(), g[val].max()) if cmap is not wqi_cmap else cmap
cm.caption = title
cm.add_to(m)
is_line = g.geometry.iloc[0].geom_type.startswith("Line")
style = (lambda f, vc=val:
{"color": cm(f['properties'][vc]), "weight": 4, "opacity": .9} if is_line else
{"fillColor": cm(f['properties'][vc]), "fillOpacity": .8,
"color": "black", "weight": .3})
fields = [zfield, val]
aliases = [zalias, title]
if "pacientes" in g.columns and val != "pacientes":
fields.append("pacientes"); aliases.append("Pacientes")
if "wqi_cat" in g.columns:
fields.insert(2, "wqi_cat"); aliases.insert(2, "Calidad")
if "nombre" in g.columns:
fields.insert(1,"nombre"); aliases.insert(1,"RΓo")
folium.GeoJson(
g, name=title, style_function=style,
highlight_function=lambda _: {"weight": 2, "color": "#444"},
tooltip=folium.GeoJsonTooltip(fields, aliases, sticky=True)
).add_to(m)
# βββββββββββ mapa βββββββββββ
def crear_mapa(d_filt, capas_sel, ver_cluster):
pts = prep_pts(d_filt)
caps = capas_conteos(pts)
g_loc = pts.groupby("localidad").size().reset_index(name="pacientes")
geo = geo_loc.merge(g_loc, on="localidad", how="left").fillna({"pacientes": 0})
m = folium.Map(location=[4.65, -74.1], zoom_start=11, tiles="CartoDB positron")
choropleth(m, geo, "pacientes", "No. Pacientes", branca.colormap.linear.Reds_09, "localidad", "Localidad")
for capa in capas_sel:
if capa == "Heatmap pacientes": continue
if capa == "WQI":
wqi_cmap.add_to(m)
choropleth(m, caps["WQI"], "wqi_val", "WQI", wqi_cmap, "tramo", "Tramo")
continue
val, uni, cmap, zf, za = META_CAPAS[capa]
choropleth(m, caps[capa], val, f"{capa} ({uni})", cmap, zf, za)
if "Heatmap pacientes" in capas_sel and not pts.empty:
HeatMap(pts[["latitud", "longitud"]].values, radius=18,
name="Heatmap pacientes").add_to(m)
fg = folium.FeatureGroup("Pacientes", overlay=True)
for _, r in pts.iterrows():
folium.CircleMarker(
(r["latitud"], r["longitud"]), radius=6, color="#c00",
fill=True, fill_color="#fff", fill_opacity=.9,
popup=popup(r)
).add_to(fg)
fg.add_to(m)
if ver_cluster and len(pts) > 2:
coords = np.radians(pts[["latitud", "longitud"]])
lab = DBSCAN(eps=1/6371, min_samples=3, metric="haversine").fit_predict(coords)
pts["cluster"] = lab
cl_fg = folium.FeatureGroup("ClΓΊsteres (1 km)", overlay=True)
pal = branca.colormap.linear.Set1_09
for cl in sorted(c for c in pts["cluster"].unique() if c != -1):
color = pal(cl / max(1, pts["cluster"].nunique() - 1))
for _, r in pts[pts["cluster"] == cl].iterrows():
folium.CircleMarker(
(r["latitud"], r["longitud"]), radius=7, color=color,
fill=True, fill_color=color, fill_opacity=.9,
popup=f"<b>ClΓΊster {cl}</b><br>"+popup(r)
).add_to(cl_fg)
cl_fg.add_to(m)
folium.LayerControl(collapsed=False).add_to(m)
return m._repr_html_()
# βββββββββββ interfaz Gradio βββββββββββ
gen_opts = ["Todos"] + sorted(df_all["genero_cat"].unique())
age_opts = list(df_all["edad_cat"].dtype.categories)
loc_opts = sorted(df_all["localidad"].fillna("Sin dato").unique())
anca_opts = ["Todos"] + sorted(df_all["anca_cat"].unique())
mpo_opts = ["Todos"] + sorted(df_all["mpo_cat"].unique())
pr3_opts = ["Todos"] + sorted(df_all["pr3_cat"].unique())
vars_cat = ["Localidad"] + ENV_VARS_GRAFICOS + [
"genero_cat", "estrato_socioeconomico_cat", "edad_cat",
"sindrome_renal", "manifestaciones_extrarenales", "proteinuria", "anca_cat","mpo_cat","pr3_cat",
] + list(ANT_COLS_HUMAN.keys())+ ["Hallazgo Biopsia"]
vars_all = vars_cat + NUM_VARS
with gr.Blocks(title="Vasculitis ANCA BogotΓ‘") as demo:
gr.Markdown("## Explorador geoespacial β Vasculitis ANCA (BogotΓ‘)")
with gr.Row():
ui_gen = gr.Dropdown(gen_opts, label="GΓ©nero", value="Todos")
ui_age = gr.CheckboxGroup(age_opts, label="Edad (quinquenios)")
ui_loc = gr.Dropdown(loc_opts, multiselect=True, label="Localidades")
ui_renal = gr.Dropdown(["Todos", "Positivo", "Negativo"], value="Todos", label="Compromiso renal")
ui_ant = gr.CheckboxGroup(["Todos"] + list(ANT_COLS_HUMAN.keys()), label="Antecedentes")
ui_bio = gr.CheckboxGroup(["Todos"] + sorted(set(sum(df_all["biopsia_patrones"], []))), label="Hallazgo en Biopsia")
with gr.Row():
ui_anca = gr.Dropdown(anca_opts, label="ANCA", value="Todos")
ui_mpo = gr.Dropdown(mpo_opts, label="MPO", value="Todos")
ui_pr3 = gr.Dropdown(pr3_opts, label="PR3", value="Todos")
ui_capas = gr.CheckboxGroup(list(GEO_AMBIENTALES.keys()), label="Capas mapa")
ui_clu = gr.Checkbox(label="Mostrar clΓΊsteres (1 km)")
with gr.Tab("Mapa"):
btn_map = gr.Button("Generar mapa")
out_map = gr.HTML()
btn_map.click(
lambda *i: crear_mapa(filtrar(df_all, *i[:-2]), i[-2], i[-1]),
inputs=[ui_gen, ui_age, ui_loc, ui_renal, ui_ant, ui_bio, ui_anca, ui_mpo, ui_pr3, ui_capas, ui_clu],
outputs=out_map)
with gr.Tab("Univariado"):
ui_var = gr.Dropdown(vars_all, label="Variable")
btn_uni = gr.Button("Graficar")
out_uni = gr.Plot()
btn_uni.click(
lambda v, *i: g_uni(v, filtrar(df_all, *i)),
inputs=[ui_var, ui_gen, ui_age, ui_loc, ui_renal, ui_ant, ui_bio, ui_anca, ui_mpo, ui_pr3],
outputs=out_uni)
with gr.Tab("Bivariado"):
ui_x = gr.Dropdown(vars_all, label="Variable X")
ui_y = gr.Dropdown(vars_all, label="Variable Y")
btn_bi = gr.Button("Graficar")
out_bi = gr.Plot()
btn_bi.click(
lambda x, y, *i: g_bi(x, y, filtrar(df_all, *i)),
inputs=[ui_x, ui_y, ui_gen, ui_age, ui_loc, ui_renal, ui_ant, ui_bio, ui_anca, ui_mpo, ui_pr3],
outputs=out_bi)
if __name__ == "__main__":
demo.launch()
|