File size: 911 Bytes
16a2fb8
7f67963
 
 
 
56bb892
 
16a2fb8
00167e6
16a2fb8
7f67963
16a2fb8
7f67963
00167e6
7f67963
00167e6
7f67963
00167e6
 
b09c46c
 
7f67963
56bb892
7f67963
 
 
 
00167e6
56bb892
7f67963
 
 
56bb892
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
import gradio as gr
from ultralytics import YOLO
from PIL import Image

# 正确方式:信任 YOLOv8 的 DetectionModel 类(适配 PyTorch 2.6+)
torch.serialization.add_safe_globals(['ultralytics.nn.tasks.DetectionModel'])

# 加载模型
model = YOLO("best.pt")

# 定义推理函数
def predict(img):
    results = model(img)[0]
    output = []
    for box in results.boxes:
        cls_id = int(box.cls[0])
        label = results.names[cls_id]
        conf = float(box.conf[0])
        output.append(f"检测到:{label}(置信度:{conf*100:.1f}%)")
    return output  # ✅ 返回字符串列表,前端可读!

# 创建 Gradio 接口
iface = gr.Interface(
    fn=predict,
    inputs=gr.Image(type="pil"),
    outputs="json",
    title="眼部疾病检测(YOLOv8)",
    description="上传或拍摄眼部图像,模型将自动分析潜在的眼病。"
)

iface.launch()