File size: 5,584 Bytes
7f119fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import argparse
import queue
import sys
import uuid
from functools import partial

import numpy as np
import tritonclient.grpc as grpcclient
from tritonclient.utils import InferenceServerException
import gradio as gr
from functools import wraps

####
from PIL import Image
import base64
import io
#####
from http.server import HTTPServer, SimpleHTTPRequestHandler
import socket
####
import os
import uuid
####

class UserData:
    def __init__(self):
        self._completed_requests = queue.Queue()

def callback(user_data, result, error):
    if error:
        user_data._completed_requests.put(error)
    else:
        user_data._completed_requests.put(result)

def make_a_try(img_url,text):
    model_name = 'ensemble_mllm'
    user_data = UserData()
    sequence_id = 100
    int_sequence_id0 = sequence_id
    result_list=[]
    try:
        triton_client = grpcclient.InferenceServerClient(
            url="10.95.163.43:8001",
            # verbose=FLAGS.verbose,
            verbose = True, #False
            ssl=False,
            root_certificates=None,
            private_key=None,
            certificate_chain=None,
        )
    except Exception as e:
        print("channel creation failed: " + str(e))
        return ""
    # Infer
    inputs = []
    img_url_bytes = img_url.encode("utf-8")
    img_url_bytes = np.array(img_url_bytes, dtype=bytes)
    img_url_bytes = img_url_bytes.reshape([1, -1])

    inputs.append(grpcclient.InferInput('IMAGE_URL', img_url_bytes.shape, "BYTES"))
    inputs[0].set_data_from_numpy(img_url_bytes)

    text_bytes = text.encode("utf-8")
    text_bytes = np.array(text_bytes, dtype=bytes)
    text_bytes = text_bytes.reshape([1, -1])
    # text_input = np.expand_dims(text_bytes, axis=0)
    text_input = text_bytes

    inputs.append(grpcclient.InferInput('TEXT', text_input.shape, "BYTES"))
    inputs[1].set_data_from_numpy(text_input)

    outputs = []
    outputs.append(grpcclient.InferRequestedOutput("OUTPUT"))
    # Test with outputs
    results = triton_client.infer(
        model_name=model_name,
        inputs=inputs,
        outputs=outputs,
        client_timeout=None, #FLAGS.client_timeout,
        # headers={"test": "1"},
        compression_algorithm=None, #FLAGS.grpc_compression_algorithm,
    )

    statistics = triton_client.get_inference_statistics(model_name=model_name)
    print(statistics)
    if len(statistics.model_stats) != 1:
        print("FAILED: Inference Statistics")
        return ""

    # Get the output arrays from the results
    output_data = results.as_numpy("OUTPUT")
    result_str = output_data[0][0].decode('utf-8')

    print("OUTPUT: "+ result_str)
    return result_str

def greet(image, text):
    ###save img
    static_path = f"/workdir/yanghandi/gradio_demo/static"
    # 将图片转换为字节流
    img_byte_arr = io.BytesIO()
    try:
        image.save(img_byte_arr, format='JPEG')
    except Exception:
        return ""
    img_byte_arr = img_byte_arr.getvalue()

    # 为图片生成一个唯一的文件名
    # filename = "image_" + str(os.getpid()) + ".jpg" #uuid
    unique_id = uuid.uuid4()
    filename = f"image_{unique_id}.jpg"
    filepath = os.path.join(static_path, filename)

    # 将字节流写入文件
    with open(filepath, 'wb') as f:
        f.write(img_byte_arr)


    img_url = f"http://10.99.5.48:8080/file=static/" + filename
    # img_url = PIL_to_URL(img_url)
    # img_url = "http://10.99.5.48:8080/file=static/0000.jpeg"
    result = make_a_try(img_url,text)
    # print(result)
    return result


def clear_output():

    return ""

def get_example():
    return [
        [f"/workdir/yanghandi/gradio_demo/static/0001.jpg", f"图中的人物是谁"]
    ]
if __name__ == "__main__":

    param_info = {}
    # param_info['appkey'] = "com.sankuai.automl.serving"
    param_info['appkey'] = "10.199.14.151:8001"

    # param_info['remote_appkey'] = "com.sankuai.automl.chat3"
    param_info['remote_appkey'] = "10.199.14.151:8001"
    param_info['model_name'] = 'ensemble_mllm'
    param_info['model_version'] = "1"
    param_info['time_out'] = 60000
    param_info['server_targets'] = []
    param_info['outputs'] = 'response'


    gr.set_static_paths(paths=["static/"])
    
    with gr.Blocks(title='demo') as demo:
        gr.Markdown("# 自研模型测试demo")
        gr.Markdown("尝试使用该demo,上传图片并开始讨论它,或者尝试下面的例子")

        with gr.Row():
            with gr.Column():
                # imagebox = gr.Image(value="static/0000.jpeg",type="pil")
                imagebox = gr.Image(type="pil")
                promptbox = gr.Textbox(label = "prompt")
            
            with gr.Column():
                output = gr.Textbox(label = "output")
        with gr.Row():
            submit = gr.Button("submit")
            clear = gr.Button("clear")

        submit.click(fn=greet,inputs=[imagebox, promptbox],outputs=[output])
        clear.click(fn=clear_output, inputs=[], outputs=[output])
        
        gr.Markdown("# example")
        
        gr.Examples(
            examples = get_example(),
            fn = greet,
            inputs=[imagebox, promptbox],
            outputs = [output],
            cache_examples = True
        )

    demo.launch(server_name="0.0.0.0", server_port=8080, debug=True, share=True)   


    # img_url = f"https://s3plus.sankuai.com/automl-pkgs/0000.jpeg"
    # # img_url = f"http://10.99.5.48:8080/file=static/static/image_cff7077b-3506-4253-82b7-b6547f2f63c1.jpg"
    # text = f"talk about this women"
    # greet(img_url,text)