File size: 28,471 Bytes
8fdc036 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
"""gr.Chatbot() component."""
from __future__ import annotations
import inspect
from pathlib import Path
from typing import Any, Callable, List, Literal, Optional, Tuple, Union
from gradio_client import utils as client_utils
from gradio_client.documentation import document
from gradio import utils
from gradio.components.base import Component
from gradio.data_classes import FileData, GradioModel, GradioRootModel
from gradio.events import Events
class FileMessage(GradioModel):
file: FileData
alt_text: Optional[str] = None
class ChatbotData(GradioRootModel):
root: List[Tuple[Union[str, FileMessage, None], Union[str, FileMessage, None]]]
from gradio.events import Dependency
@document()
class Chatbot(Component):
"""
Creates a chatbot that displays user-submitted messages and responses. Supports a subset of Markdown including bold, italics, code, tables.
Also supports audio/video/image files, which are displayed in the Chatbot, and other kinds of files which are displayed as links. This
component is usually used as an output component.
Demos: chatbot_simple, chatbot_multimodal
Guides: creating-a-chatbot
"""
EVENTS = [Events.change, Events.select, Events.like]
data_model = ChatbotData
def __init__(
self,
value: list[list[str | tuple[str] | tuple[str | Path, str] | None]]
| Callable
| None = None,
*,
label: str | None = None,
every: float | None = None,
show_label: bool | None = None,
container: bool = True,
scale: int | None = None,
min_width: int = 160,
visible: bool = True,
elem_id: str | None = None,
elem_classes: list[str] | str | None = None,
render: bool = True,
key: int | str | None = None,
height: int | str | None = None,
latex_delimiters: list[dict[str, str | bool]] | None = None,
rtl: bool = False,
show_share_button: bool | None = None,
show_copy_button: bool = False,
avatar_images: tuple[str | Path | None, str | Path | None] | None = None,
sanitize_html: bool = True,
render_markdown: bool = True,
bubble_full_width: bool = True,
line_breaks: bool = True,
likeable: bool = False,
layout: Literal["panel", "bubble"] | None = None,
placeholder: str | None = None,
):
"""
Parameters:
value: Default value to show in chatbot. If callable, the function will be called whenever the app loads to set the initial value of the component.
label: The label for this component. Appears above the component and is also used as the header if there are a table of examples for this component. If None and used in a `gr.Interface`, the label will be the name of the parameter this component is assigned to.
every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute.
show_label: if True, will display label.
container: If True, will place the component in a container - providing some extra padding around the border.
scale: relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True.
min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.
visible: If False, component will be hidden.
elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
render: If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.
key: if assigned, will be used to assume identity across a re-render. Components that have the same key across a re-render will have their value preserved.
height: The height of the component, specified in pixels if a number is passed, or in CSS units if a string is passed.
latex_delimiters: A list of dicts of the form {"left": open delimiter (str), "right": close delimiter (str), "display": whether to display in newline (bool)} that will be used to render LaTeX expressions. If not provided, `latex_delimiters` is set to `[{ "left": "$$", "right": "$$", "display": True }]`, so only expressions enclosed in $$ delimiters will be rendered as LaTeX, and in a new line. Pass in an empty list to disable LaTeX rendering. For more information, see the [KaTeX documentation](https://katex.org/docs/autorender.html).
rtl: If True, sets the direction of the rendered text to right-to-left. Default is False, which renders text left-to-right.
show_share_button: If True, will show a share icon in the corner of the component that allows user to share outputs to Hugging Face Spaces Discussions. If False, icon does not appear. If set to None (default behavior), then the icon appears if this Gradio app is launched on Spaces, but not otherwise.
show_copy_button: If True, will show a copy button for each chatbot message.
avatar_images: Tuple of two avatar image paths or URLs for user and bot (in that order). Pass None for either the user or bot image to skip. Must be within the working directory of the Gradio app or an external URL.
sanitize_html: If False, will disable HTML sanitization for chatbot messages. This is not recommended, as it can lead to security vulnerabilities.
render_markdown: If False, will disable Markdown rendering for chatbot messages.
bubble_full_width: If False, the chat bubble will fit to the content of the message. If True (default), the chat bubble will be the full width of the component.
line_breaks: If True (default), will enable Github-flavored Markdown line breaks in chatbot messages. If False, single new lines will be ignored. Only applies if `render_markdown` is True.
likeable: Whether the chat messages display a like or dislike button. Set automatically by the .like method but has to be present in the signature for it to show up in the config.
layout: If "panel", will display the chatbot in a llm style layout. If "bubble", will display the chatbot with message bubbles, with the user and bot messages on alterating sides. Will default to "bubble".
placeholder: a placeholder message to display in the chatbot when it is empty. Centered vertically and horizontally in the Chatbot. Supports Markdown and HTML. If None, no placeholder is displayed.
"""
self.likeable = likeable
self.height = height
self.rtl = rtl
if latex_delimiters is None:
latex_delimiters = [{"left": "$$", "right": "$$", "display": True}]
self.latex_delimiters = latex_delimiters
self.show_share_button = (
(utils.get_space() is not None)
if show_share_button is None
else show_share_button
)
self.render_markdown = render_markdown
self.show_copy_button = show_copy_button
self.sanitize_html = sanitize_html
self.bubble_full_width = bubble_full_width
self.line_breaks = line_breaks
self.layout = layout
super().__init__(
label=label,
every=every,
show_label=show_label,
container=container,
scale=scale,
min_width=min_width,
visible=visible,
elem_id=elem_id,
elem_classes=elem_classes,
render=render,
key=key,
value=value,
)
self.avatar_images: list[dict | None] = [None, None]
if avatar_images is None:
pass
else:
self.avatar_images = [
self.serve_static_file(avatar_images[0]),
self.serve_static_file(avatar_images[1]),
]
self.placeholder = placeholder
def _preprocess_chat_messages(
self, chat_message: str | FileMessage | None
) -> str | tuple[str | None] | tuple[str | None, str] | None:
if chat_message is None:
return None
elif isinstance(chat_message, FileMessage):
if chat_message.alt_text is not None:
return (chat_message.file.path, chat_message.alt_text)
else:
return (chat_message.file.path,)
elif isinstance(chat_message, str):
return chat_message
else:
raise ValueError(f"Invalid message for Chatbot component: {chat_message}")
def preprocess(
self,
payload: ChatbotData | None,
) -> list[list[str | tuple[str] | tuple[str, str] | None]] | None:
"""
Parameters:
payload: data as a ChatbotData object
Returns:
Passes the messages in the chatbot as a `list[list[str | None | tuple]]`, i.e. a list of lists. The inner list has 2 elements: the user message and the response message. Each message can be (1) a string in valid Markdown, (2) a tuple if there are displayed files: (a filepath or URL to a file, [optional string alt text]), or (3) None, if there is no message displayed.
"""
if payload is None:
return payload
processed_messages = []
for message_pair in payload.root:
if not isinstance(message_pair, (tuple, list)):
raise TypeError(
f"Expected a list of lists or list of tuples. Received: {message_pair}"
)
if len(message_pair) != 2:
raise TypeError(
f"Expected a list of lists of length 2 or list of tuples of length 2. Received: {message_pair}"
)
processed_messages.append(
[
self._preprocess_chat_messages(message_pair[0]),
self._preprocess_chat_messages(message_pair[1]),
]
)
return processed_messages
def _postprocess_chat_messages(
self, chat_message: str | tuple | list | None
) -> str | FileMessage | None:
if chat_message is None:
return None
elif isinstance(chat_message, (tuple, list)):
filepath = str(chat_message[0])
mime_type = client_utils.get_mimetype(filepath)
return FileMessage(
file=FileData(path=filepath, mime_type=mime_type),
alt_text=chat_message[1] if len(chat_message) > 1 else None,
)
elif isinstance(chat_message, str):
chat_message = inspect.cleandoc(chat_message)
return chat_message
else:
raise ValueError(f"Invalid message for Chatbot component: {chat_message}")
def postprocess(
self,
value: list[list[str | tuple[str] | tuple[str, str] | None] | tuple] | None,
) -> ChatbotData:
"""
Parameters:
value: expects a `list[list[str | None | tuple]]`, i.e. a list of lists. The inner list should have 2 elements: the user message and the response message. The individual messages can be (1) strings in valid Markdown, (2) tuples if sending files: (a filepath or URL to a file, [optional string alt text]) -- if the file is image/video/audio, it is displayed in the Chatbot, or (3) None, in which case the message is not displayed.
Returns:
an object of type ChatbotData
"""
if value is None:
return ChatbotData(root=[])
processed_messages = []
for message_pair in value:
if not isinstance(message_pair, (tuple, list)):
raise TypeError(
f"Expected a list of lists or list of tuples. Received: {message_pair}"
)
if len(message_pair) != 2:
raise TypeError(
f"Expected a list of lists of length 2 or list of tuples of length 2. Received: {message_pair}"
)
processed_messages.append(
[
self._postprocess_chat_messages(message_pair[0]),
self._postprocess_chat_messages(message_pair[1]),
]
)
return ChatbotData(root=processed_messages)
def example_payload(self) -> Any:
return [["Hello!", None]]
def example_value(self) -> Any:
return [["Hello!", None]]
def change(self,
fn: Callable | None,
inputs: Component | Sequence[Component] | set[Component] | None = None,
outputs: Component | Sequence[Component] | None = None,
api_name: str | None | Literal[False] = None,
scroll_to_output: bool = False,
show_progress: Literal["full", "minimal", "hidden"] = "full",
queue: bool | None = None,
batch: bool = False,
max_batch_size: int = 4,
preprocess: bool = True,
postprocess: bool = True,
cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
every: float | None = None,
trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
js: str | None = None,
concurrency_limit: int | None | Literal["default"] = "default",
concurrency_id: str | None = None,
show_api: bool = True) -> Dependency:
"""
Parameters:
fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
outputs: List of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
api_name: Defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
scroll_to_output: If True, will scroll to output component on completion
show_progress: If True, will show progress animation while pending
queue: If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
cancels: A list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds.
trigger_mode: If "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
concurrency_limit: If set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
concurrency_id: If set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
"""
...
def select(self,
fn: Callable | None,
inputs: Component | Sequence[Component] | set[Component] | None = None,
outputs: Component | Sequence[Component] | None = None,
api_name: str | None | Literal[False] = None,
scroll_to_output: bool = False,
show_progress: Literal["full", "minimal", "hidden"] = "full",
queue: bool | None = None,
batch: bool = False,
max_batch_size: int = 4,
preprocess: bool = True,
postprocess: bool = True,
cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
every: float | None = None,
trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
js: str | None = None,
concurrency_limit: int | None | Literal["default"] = "default",
concurrency_id: str | None = None,
show_api: bool = True) -> Dependency:
"""
Parameters:
fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
outputs: List of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
api_name: Defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
scroll_to_output: If True, will scroll to output component on completion
show_progress: If True, will show progress animation while pending
queue: If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
cancels: A list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds.
trigger_mode: If "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
concurrency_limit: If set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
concurrency_id: If set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
"""
...
def like(self,
fn: Callable | None,
inputs: Component | Sequence[Component] | set[Component] | None = None,
outputs: Component | Sequence[Component] | None = None,
api_name: str | None | Literal[False] = None,
scroll_to_output: bool = False,
show_progress: Literal["full", "minimal", "hidden"] = "full",
queue: bool | None = None,
batch: bool = False,
max_batch_size: int = 4,
preprocess: bool = True,
postprocess: bool = True,
cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
every: float | None = None,
trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
js: str | None = None,
concurrency_limit: int | None | Literal["default"] = "default",
concurrency_id: str | None = None,
show_api: bool = True) -> Dependency:
"""
Parameters:
fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
outputs: List of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
api_name: Defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
scroll_to_output: If True, will scroll to output component on completion
show_progress: If True, will show progress animation while pending
queue: If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
cancels: A list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
every: Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds.
trigger_mode: If "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
concurrency_limit: If set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
concurrency_id: If set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
"""
... |