File size: 4,989 Bytes
de4f9aa
69545c2
 
 
 
 
7f2b13a
69545c2
 
 
 
 
 
 
 
 
1fdf523
69545c2
 
1fdf523
69545c2
 
 
 
7849b8f
 
7f2b13a
 
7849b8f
 
5f1292c
7f2b13a
1fdf523
5f1292c
 
1fdf523
5f1292c
1fdf523
7f2b13a
7849b8f
c79b27e
7f2b13a
0a9b429
 
7f2b13a
0a9b429
d7f6c17
4e8a148
d211767
9b6b6b1
 
 
 
 
7849b8f
55b2656
9b6b6b1
7f2b13a
 
9b6b6b1
 
 
1fdf523
 
9b6b6b1
4e8a148
d211767
d7f6c17
 
 
9b6b6b1
0a9b429
 
 
 
 
 
7f2b13a
0a9b429
 
 
 
4e8a148
0a9b429
 
9b6b6b1
 
0a9b429
9b6b6b1
b0801de
9b6b6b1
4e8a148
 
1fdf523
 
9b6b6b1
1fdf523
 
 
 
 
 
 
 
4e5fb8f
7f2b13a
 
1fdf523
9b6b6b1
7f2b13a
9b6b6b1
1fdf523
 
 
 
 
 
 
9b6b6b1
1fdf523
 
7f2b13a
1fdf523
 
7f2b13a
 
0225f43
7f2b13a
4e8a148
3503d68
d7f6c17
3503d68
c79b27e
 
b0801de
3503d68
c79b27e
3503d68
 
c79b27e
b0801de
 
c79b27e
3503d68
 
 
 
7f2b13a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import cv2
import numpy as np
import torch
from ultralytics import YOLO
from sort import Sort
import gradio as gr

# Load YOLOv12x model
MODEL_PATH = "yolov12x.pt"
model = YOLO(MODEL_PATH)

# COCO dataset class ID for truck
TRUCK_CLASS_ID = 7  # "truck"

# Initialize SORT tracker
tracker = Sort()

# Minimum confidence threshold for detection
CONFIDENCE_THRESHOLD = 0.4  # Lowered for better detection

# Distance threshold to avoid duplicate counts
DISTANCE_THRESHOLD = 50

# Dictionary to define keyword-based time intervals
TIME_INTERVALS = {
    "one": 1, "two": 2, "three": 3, "four": 4, "five": 5,
    "six": 6, "seven": 7, "eight": 8, "nine": 9, "ten": 10, "eleven": 11
}

def determine_time_interval(video_filename):
    """ Determines frame skip interval based on keywords in the filename. """
    print(f"Checking filename: {video_filename}")  # Debugging
    for keyword, interval in TIME_INTERVALS.items():
        if keyword in video_filename:
            print(f"Matched keyword: {keyword} -> Interval: {interval}")  # Debugging
            return interval
    print("No keyword match, using default interval: 5")  # Debugging
    return 5  # Default interval

def count_unique_trucks(video_path):
    """ Counts unique trucks in a video using YOLOv12x and SORT tracking. """
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        return {"Error": "Unable to open video file."}

    # Reset variables at the start of each analysis
    unique_truck_ids = set()
    truck_history = {}

    # Get FPS of the video
    fps = int(cap.get(cv2.CAP_PROP_FPS))

    # Extract filename from the path and convert to lowercase
    video_filename = os.path.basename(video_path).lower()

    # Determine the dynamic time interval based on filename keywords
    time_interval = determine_time_interval(video_filename)

    # Get total frames in the video
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

    # Ensure frame_skip does not exceed total frames
    frame_skip = min(fps * time_interval, total_frames // 2)  # Reduced skipping

    frame_count = 0

    # Reinitialize the tracker to clear any previous state
    tracker = Sort()

    while True:
        ret, frame = cap.read()
        if not ret:
            break  # End of video

        frame_count += 1
        if frame_count % frame_skip != 0:
            continue  # Skip frames based on interval

        # Run YOLOv12x inference
        results = model(frame, verbose=False)

        detections = []
        for result in results:
            for box in result.boxes:
                class_id = int(box.cls.item())  # Get class ID
                confidence = float(box.conf.item())  # Get confidence score

                # Track only trucks
                if class_id == TRUCK_CLASS_ID and confidence > CONFIDENCE_THRESHOLD:
                    x1, y1, x2, y2 = map(int, box.xyxy[0])  # Get bounding box
                    detections.append([x1, y1, x2, y2, confidence])

        # Debugging: Check detections
        print(f"Frame {frame_count}: Detections -> {detections}")

        if len(detections) > 0:
            detections = np.array(detections)
            tracked_objects = tracker.update(detections)
        else:
            tracked_objects = []  # Prevent tracker from resetting

        # Debugging: Check tracked objects
        print(f"Frame {frame_count}: Tracked Objects -> {tracked_objects}")

        for obj in tracked_objects:
            truck_id = int(obj[4])  # Unique ID assigned by SORT
            x1, y1, x2, y2 = obj[:4]  # Get the bounding box coordinates

            truck_center = (x1 + x2) / 2, (y1 + y2) / 2  # Calculate truck center

            # If truck is already in history, check movement distance
            if truck_id in truck_history:
                last_position = truck_history[truck_id]["position"]
                distance = np.linalg.norm(np.array(truck_center) - np.array(last_position))

                if distance > DISTANCE_THRESHOLD:
                    unique_truck_ids.add(truck_id)  # Add only if moved significantly

            else:
                # If truck is not in history, add it
                truck_history[truck_id] = {
                    "frame_count": frame_count,
                    "position": truck_center
                }
                unique_truck_ids.add(truck_id)

    cap.release()
    return {"Total Unique Trucks": len(unique_truck_ids)}


# Gradio UI function
def analyze_video(video_file):
    result = count_unique_trucks(video_file)
    return "\n".join([f"{key}: {value}" for key, value in result.items()])

# Define Gradio interface
iface = gr.Interface(
    fn=analyze_video,
    inputs=gr.Video(label="Upload Video"),
    outputs=gr.Textbox(label="Analysis Result"),
    title="YOLOv12x Unique Truck Counter",
    description="Upload a video to count unique trucks using YOLOv12x and SORT tracking."
)

# Launch the Gradio app
if __name__ == "__main__":
    iface.launch()