Spaces:
Sleeping
Sleeping
File size: 4,989 Bytes
de4f9aa 69545c2 7f2b13a 69545c2 1fdf523 69545c2 1fdf523 69545c2 7849b8f 7f2b13a 7849b8f 5f1292c 7f2b13a 1fdf523 5f1292c 1fdf523 5f1292c 1fdf523 7f2b13a 7849b8f c79b27e 7f2b13a 0a9b429 7f2b13a 0a9b429 d7f6c17 4e8a148 d211767 9b6b6b1 7849b8f 55b2656 9b6b6b1 7f2b13a 9b6b6b1 1fdf523 9b6b6b1 4e8a148 d211767 d7f6c17 9b6b6b1 0a9b429 7f2b13a 0a9b429 4e8a148 0a9b429 9b6b6b1 0a9b429 9b6b6b1 b0801de 9b6b6b1 4e8a148 1fdf523 9b6b6b1 1fdf523 4e5fb8f 7f2b13a 1fdf523 9b6b6b1 7f2b13a 9b6b6b1 1fdf523 9b6b6b1 1fdf523 7f2b13a 1fdf523 7f2b13a 0225f43 7f2b13a 4e8a148 3503d68 d7f6c17 3503d68 c79b27e b0801de 3503d68 c79b27e 3503d68 c79b27e b0801de c79b27e 3503d68 7f2b13a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import os
import cv2
import numpy as np
import torch
from ultralytics import YOLO
from sort import Sort
import gradio as gr
# Load YOLOv12x model
MODEL_PATH = "yolov12x.pt"
model = YOLO(MODEL_PATH)
# COCO dataset class ID for truck
TRUCK_CLASS_ID = 7 # "truck"
# Initialize SORT tracker
tracker = Sort()
# Minimum confidence threshold for detection
CONFIDENCE_THRESHOLD = 0.4 # Lowered for better detection
# Distance threshold to avoid duplicate counts
DISTANCE_THRESHOLD = 50
# Dictionary to define keyword-based time intervals
TIME_INTERVALS = {
"one": 1, "two": 2, "three": 3, "four": 4, "five": 5,
"six": 6, "seven": 7, "eight": 8, "nine": 9, "ten": 10, "eleven": 11
}
def determine_time_interval(video_filename):
""" Determines frame skip interval based on keywords in the filename. """
print(f"Checking filename: {video_filename}") # Debugging
for keyword, interval in TIME_INTERVALS.items():
if keyword in video_filename:
print(f"Matched keyword: {keyword} -> Interval: {interval}") # Debugging
return interval
print("No keyword match, using default interval: 5") # Debugging
return 5 # Default interval
def count_unique_trucks(video_path):
""" Counts unique trucks in a video using YOLOv12x and SORT tracking. """
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return {"Error": "Unable to open video file."}
# Reset variables at the start of each analysis
unique_truck_ids = set()
truck_history = {}
# Get FPS of the video
fps = int(cap.get(cv2.CAP_PROP_FPS))
# Extract filename from the path and convert to lowercase
video_filename = os.path.basename(video_path).lower()
# Determine the dynamic time interval based on filename keywords
time_interval = determine_time_interval(video_filename)
# Get total frames in the video
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Ensure frame_skip does not exceed total frames
frame_skip = min(fps * time_interval, total_frames // 2) # Reduced skipping
frame_count = 0
# Reinitialize the tracker to clear any previous state
tracker = Sort()
while True:
ret, frame = cap.read()
if not ret:
break # End of video
frame_count += 1
if frame_count % frame_skip != 0:
continue # Skip frames based on interval
# Run YOLOv12x inference
results = model(frame, verbose=False)
detections = []
for result in results:
for box in result.boxes:
class_id = int(box.cls.item()) # Get class ID
confidence = float(box.conf.item()) # Get confidence score
# Track only trucks
if class_id == TRUCK_CLASS_ID and confidence > CONFIDENCE_THRESHOLD:
x1, y1, x2, y2 = map(int, box.xyxy[0]) # Get bounding box
detections.append([x1, y1, x2, y2, confidence])
# Debugging: Check detections
print(f"Frame {frame_count}: Detections -> {detections}")
if len(detections) > 0:
detections = np.array(detections)
tracked_objects = tracker.update(detections)
else:
tracked_objects = [] # Prevent tracker from resetting
# Debugging: Check tracked objects
print(f"Frame {frame_count}: Tracked Objects -> {tracked_objects}")
for obj in tracked_objects:
truck_id = int(obj[4]) # Unique ID assigned by SORT
x1, y1, x2, y2 = obj[:4] # Get the bounding box coordinates
truck_center = (x1 + x2) / 2, (y1 + y2) / 2 # Calculate truck center
# If truck is already in history, check movement distance
if truck_id in truck_history:
last_position = truck_history[truck_id]["position"]
distance = np.linalg.norm(np.array(truck_center) - np.array(last_position))
if distance > DISTANCE_THRESHOLD:
unique_truck_ids.add(truck_id) # Add only if moved significantly
else:
# If truck is not in history, add it
truck_history[truck_id] = {
"frame_count": frame_count,
"position": truck_center
}
unique_truck_ids.add(truck_id)
cap.release()
return {"Total Unique Trucks": len(unique_truck_ids)}
# Gradio UI function
def analyze_video(video_file):
result = count_unique_trucks(video_file)
return "\n".join([f"{key}: {value}" for key, value in result.items()])
# Define Gradio interface
iface = gr.Interface(
fn=analyze_video,
inputs=gr.Video(label="Upload Video"),
outputs=gr.Textbox(label="Analysis Result"),
title="YOLOv12x Unique Truck Counter",
description="Upload a video to count unique trucks using YOLOv12x and SORT tracking."
)
# Launch the Gradio app
if __name__ == "__main__":
iface.launch()
|