Spaces:
Sleeping
Sleeping
File size: 3,711 Bytes
b4a375f 459da81 b4a375f 9f44384 b4a375f c3b9d4f b4a375f 459da81 b4a375f 459da81 b4a375f 459da81 b4a375f 459da81 b4a375f c3b9d4f b4a375f c3b9d4f b4a375f 459da81 43e0c53 9f44384 b4a375f 9f44384 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import gradio as gr
import cv2
import numpy as np
import os
from PIL import Image
# Load YOLO model
net = cv2.dnn.readNet('yolov3.weights', 'yolov3.cfg')
# Set backend (CPU)
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
# Load class names
with open('coco.names', 'r') as f:
classes = [line.strip() for line in f.readlines()]
# Get YOLO output layer names
output_layers_names = net.getUnconnectedOutLayersNames()
def count_people_in_frame(frame):
"""
Detects people in a given frame (image) and returns count.
"""
height, width, _ = frame.shape
# Convert frame to YOLO format
blob = cv2.dnn.blobFromImage(frame, 1/255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
# Forward pass
layer_outputs = net.forward(output_layers_names)
# Process detections
boxes, confidences = [], []
for output in layer_outputs:
for detection in output:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if classes[class_id] == 'person' and confidence > 0.5:
center_x, center_y = int(detection[0] * width), int(detection[1] * height)
w, h = int(detection[2] * width), int(detection[3] * height)
x, y = int(center_x - w / 2), int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
# Apply Non-Maximum Suppression (NMS)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) if boxes else []
return len(indexes)
def analyze_image(image):
"""
Processes an image and detects people.
"""
if isinstance(image, np.ndarray):
image_cv = image # Already a NumPy array
else:
image_cv = np.array(image) # Convert PIL image to NumPy array
people_count = count_people_in_frame(image_cv)
return image, f"People in Image: {people_count}"
def analyze_video(video_file):
"""
Processes a video and detects people in each frame.
"""
video_path = video_file.name
if not os.path.exists(video_path):
return "Error: Video file could not be loaded."
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return "Error: Unable to open video file."
frame_count = 0
people_per_frame = []
while True:
ret, frame = cap.read()
if not ret:
break
# Count people in the frame
people_count = count_people_in_frame(frame)
people_per_frame.append(people_count)
frame_count += 1
cap.release()
return f"Max People Detected in Video: {max(people_per_frame) if people_per_frame else 0}"
def process_input(input_file):
"""
Determines if the input is an image or a video and calls the appropriate function.
"""
file_path = input_file.name
file_extension = os.path.splitext(file_path)[1].lower()
if file_extension in [".jpg", ".jpeg", ".png", ".bmp"]:
image = Image.open(file_path)
return analyze_image(image)
elif file_extension in [".mp4", ".avi", ".mov", ".mkv"]:
return analyze_video(input_file)
else:
return "Error: Unsupported file format."
# Gradio Interface for Image and Video Processing
app = gr.Interface(
fn=process_input,
inputs=gr.File(label="Upload Image or Video"), # Use File to handle both types
outputs=[gr.Textbox(label="People Counting Results")],
title="YOLO People Counter (Image & Video)",
description="Upload an image or video to detect and count people using YOLOv3."
)
# Launch app
if __name__ == "__main__":
app.launch()
|