File size: 10,230 Bytes
96fe5d5
 
 
f016720
96fe5d5
 
f016720
 
 
96fe5d5
 
 
 
 
 
 
 
 
 
 
 
2aa7156
 
96fe5d5
 
 
 
 
 
3fb1a1c
85c8d68
96fe5d5
 
 
a405c81
96fe5d5
 
 
2aa7156
a405c81
f016720
a405c81
68fea43
bc373af
f016720
 
 
96fe5d5
 
68fea43
 
 
 
 
 
 
f016720
68fea43
f016720
68fea43
 
 
 
96fe5d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import gradio as gr
from openai import OpenAI
import os
import openai


# client = OpenAI(api_key="sk-9hWFK-_5UQgzJMqT44ng72sZbKQXVvVXeVd11yoER3T3BlbkFJmd2HDc-N7CaH6PDRCYZfqe8hkT7DnxZNwcVkf3eeUA")

openai.api_key ="sk-9hWFK-_5UQgzJMqT44ng72sZbKQXVvVXeVd11yoER3T3BlbkFJmd2HDc-N7CaH6PDRCYZfqe8hkT7DnxZNwcVkf3eeUA"

import gradio as gr

# from langchain.chat_models import ChatOpenAI
# from langchain.memory import ConversationBufferMemory
# from langchain.chains import ConversationChain
# from langchain.schema import AIMessage, HumanMessage, SystemMessage

# from langchain.document_loaders import TextLoader
# from langchain.document_loaders import PyPDFLoader


#from langchain_community.chat_models import ChatOpenAI
from langchain_openai import ChatOpenAI
# from langchain_community.memory import ConversationBufferMemory

from langchain.memory import ConversationBufferMemory



from langchain.chains import ConversationChain
from langchain.schema import AIMessage, HumanMessage, SystemMessage

from langchain_community.document_loaders import TextLoader
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.runnables import RunnableWithMessageHistory


# LLMκ³Ό λ©”λͺ¨λ¦¬ μ΄ˆκΈ°ν™”
llm = ChatOpenAI(temperature=0.0, model='gpt-3.5-turbo', openai_api_key="sk-9hWFK-_5UQgzJMqT44ng72sZbKQXVvVXeVd11yoER3T3BlbkFJmd2HDc-N7CaH6PDRCYZfqe8hkT7DnxZNwcVkf3eeUA")

memory = ConversationBufferMemory()

#memory = RunnableWithMessageHistory()

conversation = ConversationChain(
    llm=llm,
    memory=memory)




# μ„Έμ…˜ νžˆμŠ€ν† λ¦¬ μ •μ˜
def get_session_history():
    return []  # μ„Έμ…˜ νžˆμŠ€ν† λ¦¬λ₯Ό κ΄€λ¦¬ν•˜λŠ” λ‘œμ§μ„ κ΅¬ν˜„ν•  수 μžˆμŠ΅λ‹ˆλ‹€.

# λ©”λͺ¨λ¦¬ 및 λŒ€ν™” μ΄ˆκΈ°ν™”
# memory = RunnableWithMessageHistory(runnable=llm, get_session_history=get_session_history)

# conversation = RunnableWithMessageHistory(llm=llm, memory=memory)




# 상담봇 - μ±„νŒ… 및 λ‹΅λ³€
def counseling_bot_chat(message, chat_history):
    if message == "":
        return "", chat_history
    else:
        result_message = ""
        if len(chat_history) <= 1:
            messages = [
                SystemMessage(content="당신은 ν—€μ΄λ§ˆνŠΈμ˜ μƒλ‹΄μ›μž…λ‹ˆλ‹€. 마트 μƒν’ˆκ³Ό κ΄€λ ¨λ˜μ§€ μ•Šμ€ μ§ˆλ¬Έμ—λŠ” μ •μ€‘νžˆ κ±°μ ˆν•˜μ„Έμš”."),
                AIMessage(content="μ•ˆλ…•ν•˜μ„Έμš”, ν—€μ΄λ§ˆνŠΈμž…λ‹ˆλ‹€. 상담을 λ„μ™€λ“œλ¦¬κ² μŠ΅λ‹ˆλ‹€."),
                HumanMessage(content=message)
            ]
            result_message = conversation.predict(input=messages)
        else:
            result_message = conversation.predict(input=message)

        chat_history.append([message, result_message])
        return "", chat_history

# 상담봇 - 되돌리기
def counseling_bot_undo(chat_history):
    if len(chat_history) > 1:
        chat_history.pop()
    return chat_history

# 상담봇 - μ΄ˆκΈ°ν™”
def counseling_bot_reset(chat_history):
    chat_history = [[None, "μ•ˆλ…•ν•˜μ„Έμš”, ν—€μ΄λ§ˆνŠΈμž…λ‹ˆλ‹€. 상담을 λ„μ™€λ“œλ¦¬κ² μŠ΅λ‹ˆλ‹€."]]
    return chat_history


# λ²ˆμ—­λ΄‡
def translate_bot(output_conditions, output_language, input_text):
    if input_text == "":
        return ""
    else:
        if output_conditions == "":
            output_conditions = ""
        else:
            output_conditions = "λ²ˆμ—­ν•  λ•Œμ˜ 쑰건은 λ‹€μŒκ³Ό κ°™μŠ΅λ‹ˆλ‹€. " + output_conditions

        completion = client.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=[
                {"role": "system", "content": "당신은 λ²ˆμ—­κ°€μž…λ‹ˆλ‹€. μž…λ ₯ν•œ μ–Έμ–΄λ₯Ό λ‹€λ₯Έ μ„€λͺ…없이 κ³§λ°”λ‘œ {0}둜 λ²ˆμ—­ν•΄μ„œ μ•Œλ €μ£Όμ„Έμš”. λ²ˆμ—­μ΄ λΆˆκ°€λŠ₯ν•œ 언어라면 λ²ˆμ—­μ΄ λΆˆκ°€λŠ₯ν•˜λ‹€κ³  λ§ν•œ ν›„ κ·Έ 이유λ₯Ό μ„€λͺ…ν•΄μ£Όμ„Έμš”. {1}".format(output_language, output_conditions)},
                {"role": "user", "content": input_text}
            ])

        return completion.choices[0].message.content

# λ²ˆμ—­λ΄‡ - Textμ—…λ‘œλ“œ
def translate_bot_Text_upload(files):
    loader = TextLoader(files)
    document = loader.load()
    return document[0].page_content

# λ²ˆμ—­λ΄‡ - PDFμ—…λ‘œλ“œ
def translate_bot_PDF_upload(files):
    loader = PyPDFLoader(files)
    pages = loader.load_and_split()
    return pages[0].page_content


# μ†Œμ„€λ΄‡
def novel_bot(model, temperature, detail):
    completion = client.chat.completions.create(
        model=model,
        temperature=temperature,
        messages=[
            {"role": "system", "content": "당신은 μ†Œμ„€κ°€μž…λ‹ˆλ‹€. μš”μ²­ν•˜λŠ” 쑰건에 맞좰 μ†Œμ„€μ„ μž‘μ„±ν•΄μ£Όμ„Έμš”."},
            {"role": "user", "content": detail}
        ])
    return completion.choices[0].message.content


# λ ˆμ΄μ•„μ›ƒ
with gr.Blocks(theme=gr.themes.Default()) as app:
    with gr.Tab("상담봇"):
        #1
        gr.Markdown(
            value="""
            # <center>상담봇</center>
            <center>ν—€μ΄λ§ˆνŠΈ 상담 λ΄‡μž…λ‹ˆλ‹€. λ§ˆνŠΈμ—μ„œ νŒλ§€ν•˜λŠ” μƒν’ˆκ³Ό κ΄€λ ¨λœ μ§ˆλ¬Έμ— λ‹΅λ³€λ“œλ¦½λ‹ˆλ‹€.</center>
            """)
        #2
        cb_chatbot = gr.Chatbot(
            value=[[None, "μ•ˆλ…•ν•˜μ„Έμš”, ν—€μ΄λ§ˆνŠΈμž…λ‹ˆλ‹€. 상담을 λ„μ™€λ“œλ¦¬κ² μŠ΅λ‹ˆλ‹€."]],
            show_label=False
        )
        with gr.Row():
            #3
            cb_user_input = gr.Text(
                lines=1,
                placeholder="μž…λ ₯ μ°½",
                container=False,
                scale=9
            )
            #4
            cb_send_btn = gr.Button(
                value="보내기",
                scale=1,
                variant="primary",
                icon="https://cdn-icons-png.flaticon.com/128/12439/12439334.png"
            )
        with gr.Row():
            #5
            gr.Button(value="↩️ 되돌리기").click(fn=counseling_bot_undo, inputs=cb_chatbot, outputs=cb_chatbot)
            #6
            gr.Button(value="πŸ”„οΈ μ΄ˆκΈ°ν™”").click(fn=counseling_bot_reset, inputs=cb_chatbot, outputs=cb_chatbot)
        # 보내기1
        cb_send_btn.click(fn=counseling_bot_chat, inputs=[cb_user_input, cb_chatbot], outputs=[cb_user_input, cb_chatbot])
        # 보내기2
        cb_user_input.submit(fn=counseling_bot_chat, inputs=[cb_user_input, cb_chatbot], outputs=[cb_user_input, cb_chatbot])

    with gr.Tab("λ²ˆμ—­λ΄‡"):
        #1
        gr.Markdown(
            value="""
            # <center>λ²ˆμ—­λ΄‡</center>
            <center>λ‹€κ΅­μ–΄ λ²ˆμ—­ λ΄‡μž…λ‹ˆλ‹€.</center>
            """)
        with gr.Row():
            #2
            tb_output_conditions = gr.Text(
                label="λ²ˆμ—­ 쑰건",
                placeholder="μ˜ˆμ‹œ: μžμ—°μŠ€λŸ½κ²Œ",
                lines=1,
                max_lines=3
            )
            #3
            tb_output_language = gr.Dropdown(
                label="좜λ ₯ μ–Έμ–΄",
                choices=["ν•œκ΅­μ–΄", "μ˜μ–΄", "일본어", "쀑ꡭ어"],
                value="ν•œκ΅­μ–΄",
                allow_custom_value=True,
                interactive=True
            )
        with gr.Row():
            #7
            tb_TXTupload = gr.UploadButton(label="πŸ“„ Txt μ—…λ‘œλ“œ")
            #8
            tb_PDFupload = gr.UploadButton(label="πŸ“€ PDF μ—…λ‘œλ“œ")
        #4
        tb_submit = gr.Button(
            value="λ²ˆμ—­ν•˜κΈ°",
            variant="primary"
        )
        with gr.Row():
            #5
            tb_input_text = gr.Text(
                placeholder="λ²ˆμ—­ν•  λ‚΄μš©μ„ μ μ–΄μ£Όμ„Έμš”.",
                lines=10,
                max_lines=20,
                show_copy_button=True,
                label=""
            )
            #6
            tb_output_text = gr.Text(
                lines=10,
                max_lines=20,
                show_copy_button=True,
                label="",
                interactive=False
            )
        # 보내기
        tb_submit.click(
            fn=translate_bot,
            inputs=[tb_output_conditions,
                    tb_output_language,
                    tb_input_text],
            outputs=tb_output_text
        )
        # Text파일 μ—…λ‘œλ“œ
        tb_TXTupload.upload(
            fn=translate_bot_Text_upload,
            inputs=tb_TXTupload,
            outputs=tb_input_text
        )
        # PDF파일 μ—…λ‘œλ“œ
        tb_PDFupload.upload(
            fn=translate_bot_PDF_upload,
            inputs=tb_PDFupload,
            outputs=tb_input_text
        )

    with gr.Tab("μ†Œμ„€λ΄‡"):
        #1
        gr.Markdown(
            value="""
            # <center>μ†Œμ„€λ΄‡</center>
            <center>μ†Œμ„€μ„ μƒμ„±ν•΄μ£ΌλŠ” λ΄‡μž…λ‹ˆλ‹€.</center>
            """)
        with gr.Accordion(label="μ‚¬μš©μž μ„€μ •"):
            with gr.Row():
                with gr.Column(scale=1):
                    #2
                    nb_model = gr.Dropdown(
                        label="λͺ¨λΈ 선택",
                        choices=["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-4", "gpt-4-32k", "gpt-4-1106-preview"],
                        value="gpt-4-1106-preview",
                        interactive=True
                    )
                    #3
                    nb_temperature = gr.Slider(
                        label="μ°½μ˜μ„±",
                        info="μˆ«μžκ°€ 높을 수둝 창의적",
                        minimum=0,
                        maximum=2,
                        step=0.1,
                        value=1,
                        interactive=True
                    )
                #4
                nb_detail = gr.Text(
                    container=False,
                    placeholder="μ†Œμ„€μ˜ 세뢀적인 섀정을 μž‘μ„±ν•©λ‹ˆλ‹€.",
                    lines=8,
                    scale=4
                )
        #5
        nb_submit = gr.Button(
            value="μƒμ„±ν•˜κΈ°",
            variant="primary"
        )
        #6
        nb_output = gr.Text(
            label="",
            placeholder="이곳에 μ†Œμ„€μ˜ λ‚΄μš©μ΄ 좜λ ₯λ©λ‹ˆλ‹€.",
            lines=10,
            max_lines=200,
            show_copy_button=True
        )
        # 보내기
        nb_submit.click(
            fn=novel_bot,
            inputs=[nb_model, nb_temperature, nb_detail],
            outputs=nb_output
        )

app.launch()