Spaces:
Running
Running
File size: 6,688 Bytes
1803579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# Code for Peekaboo
# Author: Hasib Zunair
# Modified from https://github.com/valeoai/FOUND, see license below.
# Copyright 2022 - Valeo Comfort and Driving Assistance - Oriane Siméoni @ valeo.ai
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Model code for Peekaboo"""
import os
import torch
import torch.nn as nn
import dino.vision_transformer as vits
class PeekabooModel(nn.Module):
def __init__(
self,
vit_model="dino",
vit_arch="vit_small",
vit_patch_size=8,
enc_type_feats="k",
):
super(PeekabooModel, self).__init__()
########## Encoder ##########
self.vit_encoder, self.initial_dim, self.hook_features = get_vit_encoder(
vit_arch, vit_model, vit_patch_size, enc_type_feats
)
self.vit_patch_size = vit_patch_size
self.enc_type_feats = enc_type_feats
########## Decoder ##########
self.previous_dim = self.initial_dim
self.decoder = nn.Conv2d(self.previous_dim, 1, (1, 1))
def _make_input_divisible(self, x: torch.Tensor) -> torch.Tensor:
# From selfmask
"""Pad some pixels to make the input size divisible by the patch size."""
B, _, H_0, W_0 = x.shape
pad_w = (self.vit_patch_size - W_0 % self.vit_patch_size) % self.vit_patch_size
pad_h = (self.vit_patch_size - H_0 % self.vit_patch_size) % self.vit_patch_size
x = nn.functional.pad(x, (0, pad_w, 0, pad_h), value=0)
return x
def forward(self, batch, decoder=None, for_eval=False):
# Make the image divisible by the patch size
if for_eval:
batch = self._make_input_divisible(batch)
_w, _h = batch.shape[-2:]
_h, _w = _h // self.vit_patch_size, _w // self.vit_patch_size
else:
# Cropping used during training, could be changed to improve
w, h = (
batch.shape[-2] - batch.shape[-2] % self.vit_patch_size,
batch.shape[-1] - batch.shape[-1] % self.vit_patch_size,
)
batch = batch[:, :, :w, :h]
w_featmap = batch.shape[-2] // self.vit_patch_size
h_featmap = batch.shape[-1] // self.vit_patch_size
# Forward pass
with torch.no_grad():
# Encoder forward pass
att = self.vit_encoder.get_last_selfattention(batch)
# Get decoder features
feats = self.extract_feats(dims=att.shape, type_feats=self.enc_type_feats)
feats = feats[:, 1:, :, :].reshape(att.shape[0], w_featmap, h_featmap, -1)
feats = feats.permute(0, 3, 1, 2)
# Apply decoder
if decoder is None:
decoder = self.decoder
logits = decoder(feats)
return logits
@torch.no_grad()
def decoder_load_weights(self, weights_path):
print(f"Loading model from weights {weights_path}.")
# Load states
if torch.cuda.is_available():
state_dict = torch.load(weights_path)
else:
state_dict = torch.load(weights_path, map_location=torch.device("cpu"))
# Decoder
self.decoder.load_state_dict(state_dict["decoder"])
self.decoder.eval()
self.decoder.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
@torch.no_grad()
def decoder_save_weights(self, save_dir, n_iter):
state_dict = {}
state_dict["decoder"] = self.decoder.state_dict()
fname = os.path.join(save_dir, f"decoder_weights_niter{n_iter}.pt")
torch.save(state_dict, fname)
print(f"\n----" f"\nModel saved at {fname}")
@torch.no_grad()
def extract_feats(self, dims, type_feats="k"):
nb_im, nh, nb_tokens, _ = dims
qkv = (
self.hook_features["qkv"]
.reshape(nb_im, nb_tokens, 3, nh, -1 // nh) # 3 corresponding to |qkv|
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv[0], qkv[1], qkv[2]
if type_feats == "q":
return q.transpose(1, 2).float()
elif type_feats == "k":
return k.transpose(1, 2).float()
elif type_feats == "v":
return v.transpose(1, 2).float()
else:
raise ValueError("Unknown features")
def get_vit_encoder(vit_arch, vit_model, vit_patch_size, enc_type_feats):
if vit_arch == "vit_small" and vit_patch_size == 16:
url = "dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth"
initial_dim = 384
elif vit_arch == "vit_small" and vit_patch_size == 8:
url = "dino_deitsmall8_300ep_pretrain/dino_deitsmall8_300ep_pretrain.pth"
initial_dim = 384
elif vit_arch == "vit_base" and vit_patch_size == 16:
if vit_model == "clip":
url = "5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt"
elif vit_model == "dino":
url = "dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth"
initial_dim = 768
elif vit_arch == "vit_base" and vit_patch_size == 8:
url = "dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth"
initial_dim = 768
if vit_model == "dino":
vit_encoder = vits.__dict__[vit_arch](patch_size=vit_patch_size, num_classes=0)
# TODO change if want to have last layer not unfrozen
for p in vit_encoder.parameters():
p.requires_grad = False
vit_encoder.eval().to(
torch.device("cuda" if torch.cuda.is_available() else "cpu")
) # mode eval
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/" + url
)
vit_encoder.load_state_dict(state_dict, strict=True)
hook_features = {}
if enc_type_feats in ["k", "q", "v", "qkv", "mlp"]:
# Define the hook
def hook_fn_forward_qkv(module, input, output):
hook_features["qkv"] = output
vit_encoder._modules["blocks"][-1]._modules["attn"]._modules[
"qkv"
].register_forward_hook(hook_fn_forward_qkv)
else:
raise ValueError("Not implemented.")
return vit_encoder, initial_dim, hook_features
|