File size: 3,484 Bytes
1803579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a20dc
1803579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# Code for Peekaboo
# Author: Hasib Zunair
# Modified from https://github.com/valeoai/FOUND, see license below.

# Copyright 2022 - Valeo Comfort and Driving Assistance - Oriane Siméoni @ valeo.ai
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Visualize model predictions"""

import os
import torch
import argparse
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt

from PIL import Image
from model import PeekabooModel
from misc import load_config
from torchvision import transforms as T

NORMALIZE = T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))

if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Evaluation of Peekaboo",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )

    parser.add_argument(
        "--img-path",
        type=str,
        default="data/examples/dinosaur.jpeg",
        help="Image path.",
    )
    parser.add_argument(
        "--model-weights",
        type=str,
        default="data/weights/peekaboo_decoder_weights_niter500.pt",
    )
    parser.add_argument(
        "--config",
        type=str,
        default="configs/peekaboo_DUTS-TR.yaml",
    )
    parser.add_argument(
        "--output-dir",
        type=str,
        default="outputs",
    )
    args = parser.parse_args()

    # Saving dir
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    # Configuration
    config, _ = load_config(args.config)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # Load the model
    model = PeekabooModel(
        vit_model=config.model["pre_training"],
        vit_arch=config.model["arch"],
        vit_patch_size=config.model["patch_size"],
        enc_type_feats=config.peekaboo["feats"],
    )
    # Load weights
    model.decoder_load_weights(args.model_weights)
    model.eval()
    print(f"Model {args.model_weights} loaded correctly.")

    # Load the image
    with open(args.img_path, "rb") as f:
        img = Image.open(f)
        img = img.convert("RGB")

        t = T.Compose([T.ToTensor(), NORMALIZE])
        img_t = t(img)[None, :, :, :]
        inputs = img_t.to(device)

    # Forward step
    with torch.no_grad():
        preds = model(inputs, for_eval=True)

    sigmoid = nn.Sigmoid()
    h, w = img_t.shape[-2:]
    preds_up = F.interpolate(
        preds, scale_factor=model.vit_patch_size, mode="bilinear", align_corners=False
    )[..., :h, :w]
    preds_up = (sigmoid(preds_up.detach()) > 0.5).squeeze(0).float()

    plt.figure()
    plt.imshow(img)
    plt.imshow(
        preds_up.cpu().squeeze().numpy(), "gray", interpolation="none", alpha=0.5
    )
    plt.axis("off")
    img_name = args.img_path
    img_name = img_name.split("/")[-1].split(".")[0]
    plt.savefig(
        os.path.join(args.output_dir, f"{img_name}-peekaboo.png"),
        bbox_inches="tight",
        pad_inches=0,
    )
    plt.close()
    print(f"Saved model prediction.")