Spaces:
Sleeping
Sleeping
File size: 13,113 Bytes
1803579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
# Copyright 2021 - Valeo Comfort and Driving Assistance - Oriane Siméoni @ valeo.ai
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Code adapted from previous method LOST: https://github.com/valeoai/LOST
"""
import os
import math
import torch
import json
import torchvision
import numpy as np
import skimage.io
from PIL import Image
from tqdm import tqdm
from torchvision import transforms as pth_transforms
# Image transformation applied to all images
transform = pth_transforms.Compose(
[
pth_transforms.ToTensor(),
pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
]
)
class ImageDataset:
def __init__(self, image_path):
self.image_path = image_path
self.name = image_path.split("/")[-1]
# Read the image
with open(image_path, "rb") as f:
img = Image.open(f)
img = img.convert("RGB")
# Build a dataloader
img = transform(img)
self.dataloader = [[img, image_path]]
def get_image_name(self, *args, **kwargs):
return self.image_path.split("/")[-1].split(".")[0]
def load_image(self, *args, **kwargs):
return skimage.io.imread(self.image_path)
class UODDataset:
def __init__(
self,
dataset_name,
dataset_set,
root_dir,
remove_hards: bool = False,
):
"""
Build the dataloader
"""
self.dataset_name = dataset_name
self.set = dataset_set
self.root_dir = root_dir
if dataset_name == "VOC07":
self.root_path = f"{root_dir}/VOC2007"
self.year = "2007"
elif dataset_name == "VOC12":
self.root_path = f"{root_dir}/VOC2012"
self.year = "2012"
elif dataset_name == "COCO20k":
self.year = "2014"
self.root_path = f"{root_dir}/COCO/images/{dataset_set}{self.year}"
self.sel20k = "data/coco_20k_filenames.txt"
# new JSON file constructed based on COCO train2014 gt
self.all_annfile = f"{root_dir}/COCO/annotations/instances_train2014.json"
self.annfile = (
f"{root_dir}/COCO/annotations/instances_train2014_sel20k.json"
)
if not os.path.exists(self.annfile):
select_coco_20k(self.sel20k, self.all_annfile)
else:
raise ValueError("Unknown dataset.")
if not os.path.exists(self.root_path):
raise ValueError("Please follow the README to setup the datasets.")
self.name = f"{self.dataset_name}_{self.set}"
# Build the dataloader
# import pdb; pdb.set_trace()
if "VOC" in dataset_name:
self.dataloader = torchvision.datasets.VOCDetection(
self.root_path,
year=self.year,
image_set=self.set,
transform=transform,
download=False,
)
elif "COCO20k" == dataset_name:
self.dataloader = torchvision.datasets.CocoDetection(
self.root_path, annFile=self.annfile, transform=transform
)
else:
raise ValueError("Unknown dataset.")
# Set hards images that are not included
self.remove_hards = remove_hards
self.hards = []
if remove_hards:
self.name += f"-nohards"
self.hards = self.get_hards()
print(f"Nb images discarded {len(self.hards)}")
def __len__(self) -> int:
return len(self.dataloader)
def load_image(self, im_name):
"""
Load the image corresponding to the im_name
"""
if "VOC" in self.dataset_name:
image = skimage.io.imread(
f"{self.root_dir}/VOC{self.year}/JPEGImages/{im_name}"
)
elif "COCO" in self.dataset_name:
im_path = self.path_20k[self.sel_20k.index(im_name)]
image = skimage.io.imread(f"{self.root_dir}/COCO/images/{im_path}")
else:
raise ValueError("Unkown dataset.")
return image
def get_image_name(self, inp):
"""
Return the image name
"""
if "VOC" in self.dataset_name:
im_name = inp["annotation"]["filename"]
elif "COCO" in self.dataset_name:
im_name = str(inp[0]["image_id"])
return im_name
def extract_gt(self, targets, im_name):
if "VOC" in self.dataset_name:
return extract_gt_VOC(targets, remove_hards=self.remove_hards)
elif "COCO" in self.dataset_name:
return extract_gt_COCO(targets, remove_iscrowd=True)
else:
raise ValueError("Unknown dataset")
def extract_classes(self):
if "VOC" in self.dataset_name:
cls_path = f"classes_{self.set}_{self.year}.txt"
elif "COCO" in self.dataset_name:
cls_path = f"classes_{self.dataset}_{self.set}_{self.year}.txt"
# Load if exists
if os.path.exists(cls_path):
all_classes = []
with open(cls_path, "r") as f:
for line in f:
all_classes.append(line.strip())
else:
print("Extract all classes from the dataset")
if "VOC" in self.dataset_name:
all_classes = self.extract_classes_VOC()
elif "COCO" in self.dataset_name:
all_classes = self.extract_classes_COCO()
with open(cls_path, "w") as f:
for s in all_classes:
f.write(str(s) + "\n")
return all_classes
def extract_classes_VOC(self):
all_classes = []
for im_id, inp in enumerate(tqdm(self.dataloader)):
objects = inp[1]["annotation"]["object"]
for o in range(len(objects)):
if objects[o]["name"] not in all_classes:
all_classes.append(objects[o]["name"])
return all_classes
def extract_classes_COCO(self):
all_classes = []
for im_id, inp in enumerate(tqdm(self.dataloader)):
objects = inp[1]
for o in range(len(objects)):
if objects[o]["category_id"] not in all_classes:
all_classes.append(objects[o]["category_id"])
return all_classes
def get_hards(self):
hard_path = "datasets/hard_%s_%s_%s.txt" % (
self.dataset_name,
self.set,
self.year,
)
if os.path.exists(hard_path):
hards = []
with open(hard_path, "r") as f:
for line in f:
hards.append(int(line.strip()))
else:
print("Discover hard images that should be discarded")
if "VOC" in self.dataset_name:
# set the hards
hards = discard_hard_voc(self.dataloader)
with open(hard_path, "w") as f:
for s in hards:
f.write(str(s) + "\n")
return hards
def discard_hard_voc(dataloader):
hards = []
for im_id, inp in enumerate(tqdm(dataloader)):
objects = inp[1]["annotation"]["object"]
nb_obj = len(objects)
hard = np.zeros(nb_obj)
for i, o in enumerate(range(nb_obj)):
hard[i] = (
1
if (objects[o]["truncated"] == "1" or objects[o]["difficult"] == "1")
else 0
)
# all images with only truncated or difficult objects
if np.sum(hard) == nb_obj:
hards.append(im_id)
return hards
def extract_gt_COCO(targets, remove_iscrowd=True):
objects = targets
nb_obj = len(objects)
gt_bbxs = []
gt_clss = []
for o in range(nb_obj):
# Remove iscrowd boxes
if remove_iscrowd and objects[o]["iscrowd"] == 1:
continue
gt_cls = objects[o]["category_id"]
gt_clss.append(gt_cls)
bbx = objects[o]["bbox"]
x1y1x2y2 = [bbx[0], bbx[1], bbx[0] + bbx[2], bbx[1] + bbx[3]]
x1y1x2y2 = [int(round(x)) for x in x1y1x2y2]
gt_bbxs.append(x1y1x2y2)
return np.asarray(gt_bbxs), gt_clss
def extract_gt_VOC(targets, remove_hards=False):
objects = targets["annotation"]["object"]
nb_obj = len(objects)
gt_bbxs = []
gt_clss = []
for o in range(nb_obj):
if remove_hards and (
objects[o]["truncated"] == "1" or objects[o]["difficult"] == "1"
):
continue
gt_cls = objects[o]["name"]
gt_clss.append(gt_cls)
obj = objects[o]["bndbox"]
x1y1x2y2 = [
int(obj["xmin"]),
int(obj["ymin"]),
int(obj["xmax"]),
int(obj["ymax"]),
]
# Original annotations are integers in the range [1, W or H]
# Assuming they mean 1-based pixel indices (inclusive),
# a box with annotation (xmin=1, xmax=W) covers the whole image.
# In coordinate space this is represented by (xmin=0, xmax=W)
x1y1x2y2[0] -= 1
x1y1x2y2[1] -= 1
gt_bbxs.append(x1y1x2y2)
return np.asarray(gt_bbxs), gt_clss
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
# https://github.com/ultralytics/yolov5/blob/develop/utils/general.py
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
box2 = box2.T
# Get the coordinates of bounding boxes
if x1y1x2y2: # x1, y1, x2, y2 = box1
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
else: # transform from xywh to xyxy
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
# Intersection area
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * (
torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)
).clamp(0)
# Union Area
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
union = w1 * h1 + w2 * h2 - inter + eps
iou = inter / union
if GIoU or DIoU or CIoU:
cw = torch.max(b1_x2, b2_x2) - torch.min(
b1_x1, b2_x1
) # convex (smallest enclosing box) width
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
c2 = cw**2 + ch**2 + eps # convex diagonal squared
rho2 = (
(b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2
+ (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2
) / 4 # center distance squared
if DIoU:
return iou - rho2 / c2 # DIoU
elif (
CIoU
): # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
v = (4 / math.pi**2) * torch.pow(
torch.atan(w2 / h2) - torch.atan(w1 / h1), 2
)
with torch.no_grad():
alpha = v / (v - iou + (1 + eps))
return iou - (rho2 / c2 + v * alpha) # CIoU
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
c_area = cw * ch + eps # convex area
return iou - (c_area - union) / c_area # GIoU
else:
return iou # IoU
def select_coco_20k(sel_file, all_annotations_file):
print("Building COCO 20k dataset.")
# load all annotations
with open(all_annotations_file, "r") as f:
train2014 = json.load(f)
# load selected images
with open(sel_file, "r") as f:
sel_20k = f.readlines()
sel_20k = [s.replace("\n", "") for s in sel_20k]
im20k = [str(int(s.split("_")[-1].split(".")[0])) for s in sel_20k]
new_anno = []
new_images = []
for i in tqdm(im20k):
new_anno.extend(
[a for a in train2014["annotations"] if a["image_id"] == int(i)]
)
new_images.extend([a for a in train2014["images"] if a["id"] == int(i)])
train2014_20k = {}
train2014_20k["images"] = new_images
train2014_20k["annotations"] = new_anno
train2014_20k["categories"] = train2014["categories"]
with open(
"datasets_local/COCO/annotations/instances_train2014_sel20k.json", "w"
) as outfile:
json.dump(train2014_20k, outfile)
print("Done.")
|