Spaces:
Running
Running
File size: 10,230 Bytes
1803579 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
# Code for Peekaboo
# Author: Hasib Zunair
# Modified from https://github.com/valeoai/FOUND, see license below.
# Copyright 2022 - Valeo Comfort and Driving Assistance - Oriane Siméoni @ valeo.ai
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Helpers functions"""
import re
import os
import cv2
import sys
import os.path as osp
import errno
import yaml
import math
import random
import scipy.ndimage
import numpy as np
import torch
import torch.nn.functional as F
from typing import List
from torchvision import transforms as T
from bilateral_solver import bilateral_solver_output
loader = yaml.SafeLoader
loader.add_implicit_resolver(
"tag:yaml.org,2002:float",
re.compile(
"""^(?:
[-+]?(?:[0-9][0-9_]*)\\.[0-9_]*(?:[eE][-+]?[0-9]+)?
|[-+]?(?:[0-9][0-9_]*)(?:[eE][-+]?[0-9]+)
|\\.[0-9_]+(?:[eE][-+][0-9]+)?
|[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\\.[0-9_]*
|[-+]?\\.(?:inf|Inf|INF)
|\\.(?:nan|NaN|NAN))$""",
re.X,
),
list("-+0123456789."),
)
def mkdir_if_missing(directory):
if not osp.exists(directory):
try:
os.makedirs(directory)
except OSError as e:
if e.errno != errno.EEXIST:
raise
class Logger(object):
"""
Write console output to external text file.
Code imported from https://github.com/Cysu/open-reid/blob/master/reid/utils/logging.py.
"""
def __init__(self, fpath=None):
self.console = sys.stdout
self.file = None
if fpath is not None:
mkdir_if_missing(os.path.dirname(fpath))
self.file = open(fpath, "w")
def __del__(self):
self.close()
def __enter__(self):
pass
def __exit__(self, *args):
self.close()
def write(self, msg):
self.console.write(msg)
if self.file is not None:
self.file.write(msg)
def flush(self):
self.console.flush()
if self.file is not None:
self.file.flush()
os.fsync(self.file.fileno())
def close(self):
self.console.close()
if self.file is not None:
self.file.close()
class Struct:
def __init__(self, **entries):
self.__dict__.update(entries)
def load_config(config_file):
with open(config_file, errors="ignore") as f:
# conf = yaml.safe_load(f) # load config
conf = yaml.load(f, Loader=loader)
print("hyperparameters: " + ", ".join(f"{k}={v}" for k, v in conf.items()))
# TODO yaml_save(save_dir / 'config.yaml', conf)
return Struct(**conf), conf # conf returned to print it
def set_seed(seed: int) -> None:
"""
Set all seeds to make results reproducible
"""
# env
os.environ["PYTHONHASHSEED"] = str(seed)
# python
random.seed(seed)
# numpy
np.random.seed(seed)
# torch
torch.manual_seed(seed)
torch.cuda.manual_seed(0)
torch.cuda.manual_seed_all(seed)
if torch.cuda.is_available():
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def IoU(mask1, mask2):
"""
Code adapted from TokenCut: https://github.com/YangtaoWANG95/TokenCut
"""
mask1, mask2 = (mask1 > 0.5).to(torch.bool), (mask2 > 0.5).to(torch.bool)
intersection = torch.sum(mask1 * (mask1 == mask2), dim=[-1, -2]).squeeze()
union = torch.sum(mask1 + mask2, dim=[-1, -2]).squeeze()
return (intersection.to(torch.float) / union).mean().item()
def batch_apply_bilateral_solver(data, masks, get_all_cc=True, shape=None):
cnt_bs = 0
masks_bs = []
# inputs, init_imgs, gt_labels, img_path = data
inputs, _, _, init_imgs, _, gt_labels, img_path = data
for id in range(inputs.shape[0]):
_, bs_mask, use_bs = apply_bilateral_solver(
mask=masks[id].squeeze().cpu().numpy(),
img=init_imgs[id],
img_path=img_path[id],
im_fullsize=False,
# Careful shape should be opposed
shape=(gt_labels.shape[-1], gt_labels.shape[-2]),
get_all_cc=get_all_cc,
)
cnt_bs += use_bs
# use the bilateral solver output if IoU > 0.5
if use_bs:
if shape is None:
shape = masks.shape[-2:]
# Interpolate to downsample the mask back
bs_ds = F.interpolate(
torch.Tensor(bs_mask).unsqueeze(0).unsqueeze(0),
shape, # TODO check here
mode="bilinear",
align_corners=False,
)
masks_bs.append(bs_ds.bool().cuda().squeeze()[None, :, :])
else:
# Use initial mask
masks_bs.append(masks[id].cuda().squeeze()[None, :, :])
return torch.cat(masks_bs).squeeze(), cnt_bs
def apply_bilateral_solver(
mask,
img,
img_path,
shape,
im_fullsize=False,
get_all_cc=False,
bs_iou_threshold: float = 0.5,
reshape: bool = True,
):
# Get initial image in the case of using full image
img_init = None
if not im_fullsize:
# Use the image given by dataloader
shape = (img.shape[-1], img.shape[-2])
t = T.ToPILImage()
img_init = t(img)
if reshape:
# Resize predictions to image size
resized_mask = cv2.resize(mask, shape)
sel_obj_mask = resized_mask
else:
resized_mask = mask
sel_obj_mask = mask
# Apply bilinear solver
_, binary_solver = bilateral_solver_output(
img_path,
resized_mask,
img=img_init,
sigma_spatial=16,
sigma_luma=16,
sigma_chroma=8,
get_all_cc=get_all_cc,
)
mask1 = torch.from_numpy(resized_mask).cuda()
mask2 = torch.from_numpy(binary_solver).cuda().float()
use_bs = 0
# If enough overlap, use BS output
if IoU(mask1, mask2) > bs_iou_threshold:
sel_obj_mask = binary_solver.astype(float)
use_bs = 1
return resized_mask, sel_obj_mask, use_bs
def get_bbox_from_segmentation_labels(
segmenter_predictions: torch.Tensor,
initial_image_size: torch.Size,
scales: List[int],
) -> np.array:
"""
Find the largest connected component in foreground, extract its bounding box
"""
objects, num_objects = scipy.ndimage.label(segmenter_predictions)
# find biggest connected component
all_foreground_labels = objects.flatten()[objects.flatten() != 0]
most_frequent_label = np.bincount(all_foreground_labels).argmax()
mask = np.where(objects == most_frequent_label)
# Add +1 because excluded max
ymin, ymax = min(mask[0]), max(mask[0]) + 1
xmin, xmax = min(mask[1]), max(mask[1]) + 1
if initial_image_size == segmenter_predictions.shape:
# Masks are already upsampled
pred = [xmin, ymin, xmax, ymax]
else:
# Rescale to image size
r_xmin, r_xmax = scales[1] * xmin, scales[1] * xmax
r_ymin, r_ymax = scales[0] * ymin, scales[0] * ymax
pred = [r_xmin, r_ymin, r_xmax, r_ymax]
# Check not out of image size (used when padding)
if initial_image_size:
pred[2] = min(pred[2], initial_image_size[1])
pred[3] = min(pred[3], initial_image_size[0])
return np.asarray(pred)
def bbox_iou(
box1: np.array,
box2: np.array,
x1y1x2y2: bool = True,
GIoU: bool = False,
DIoU: bool = False,
CIoU: bool = False,
eps: float = 1e-7,
):
# https://github.com/ultralytics/yolov5/blob/develop/utils/general.py
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
box2 = box2.T
# Get the coordinates of bounding boxes
if x1y1x2y2: # x1, y1, x2, y2 = box1
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
else: # transform from xywh to xyxy
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
# Intersection area
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * (
torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)
).clamp(0)
# Union Area
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
union = w1 * h1 + w2 * h2 - inter + eps
iou = inter / union
if GIoU or DIoU or CIoU:
cw = torch.max(b1_x2, b2_x2) - torch.min(
b1_x1, b2_x1
) # convex (smallest enclosing box) width
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
c2 = cw**2 + ch**2 + eps # convex diagonal squared
rho2 = (
(b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2
+ (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2
) / 4 # center distance squared
if DIoU:
return iou - rho2 / c2 # DIoU
elif (
CIoU
): # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
v = (4 / math.pi**2) * torch.pow(
torch.atan(w2 / h2) - torch.atan(w1 / h1), 2
)
with torch.no_grad():
alpha = v / (v - iou + (1 + eps))
return iou - (rho2 / c2 + v * alpha) # CIoU
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
c_area = cw * ch + eps # convex area
return iou - (c_area - union) / c_area # GIoU
else:
return iou # IoU
|