Spaces:
Sleeping
Sleeping
File size: 14,853 Bytes
2895c00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
import json
from pathlib import Path
import torch
from torch import nn
import torch.distributed as dist
import torch.backends.cudnn as cudnn
from torchvision import datasets
from torchvision import transforms as pth_transforms
from torchvision import models as torchvision_models
import utils
import vision_transformer as vits
def eval_linear(args):
utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
print(
"\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items()))
)
cudnn.benchmark = True
# ============ building network ... ============
# if the network is a Vision Transformer (i.e. vit_tiny, vit_small, vit_base)
if args.arch in vits.__dict__.keys():
model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0)
embed_dim = model.embed_dim * (
args.n_last_blocks + int(args.avgpool_patchtokens)
)
# if the network is a XCiT
elif "xcit" in args.arch:
model = torch.hub.load("facebookresearch/xcit:main", args.arch, num_classes=0)
embed_dim = model.embed_dim
# otherwise, we check if the architecture is in torchvision models
elif args.arch in torchvision_models.__dict__.keys():
model = torchvision_models.__dict__[args.arch]()
embed_dim = model.fc.weight.shape[1]
model.fc = nn.Identity()
else:
print(f"Unknow architecture: {args.arch}")
sys.exit(1)
model.cuda()
model.eval()
# load weights to evaluate
utils.load_pretrained_weights(
model, args.pretrained_weights, args.checkpoint_key, args.arch, args.patch_size
)
print(f"Model {args.arch} built.")
linear_classifier = LinearClassifier(embed_dim, num_labels=args.num_labels)
linear_classifier = linear_classifier.cuda()
linear_classifier = nn.parallel.DistributedDataParallel(
linear_classifier, device_ids=[args.gpu]
)
# ============ preparing data ... ============
val_transform = pth_transforms.Compose(
[
pth_transforms.Resize(256, interpolation=3),
pth_transforms.CenterCrop(224),
pth_transforms.ToTensor(),
pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
]
)
dataset_val = datasets.ImageFolder(
os.path.join(args.data_path, "val"), transform=val_transform
)
val_loader = torch.utils.data.DataLoader(
dataset_val,
batch_size=args.batch_size_per_gpu,
num_workers=args.num_workers,
pin_memory=True,
)
if args.evaluate:
utils.load_pretrained_linear_weights(
linear_classifier, args.arch, args.patch_size
)
test_stats = validate_network(
val_loader,
model,
linear_classifier,
args.n_last_blocks,
args.avgpool_patchtokens,
)
print(
f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
)
return
train_transform = pth_transforms.Compose(
[
pth_transforms.RandomResizedCrop(224),
pth_transforms.RandomHorizontalFlip(),
pth_transforms.ToTensor(),
pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
]
)
dataset_train = datasets.ImageFolder(
os.path.join(args.data_path, "train"), transform=train_transform
)
sampler = torch.utils.data.distributed.DistributedSampler(dataset_train)
train_loader = torch.utils.data.DataLoader(
dataset_train,
sampler=sampler,
batch_size=args.batch_size_per_gpu,
num_workers=args.num_workers,
pin_memory=True,
)
print(
f"Data loaded with {len(dataset_train)} train and {len(dataset_val)} val imgs."
)
# set optimizer
optimizer = torch.optim.SGD(
linear_classifier.parameters(),
args.lr
* (args.batch_size_per_gpu * utils.get_world_size())
/ 256.0, # linear scaling rule
momentum=0.9,
weight_decay=0, # we do not apply weight decay
)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, args.epochs, eta_min=0
)
# Optionally resume from a checkpoint
to_restore = {"epoch": 0, "best_acc": 0.0}
utils.restart_from_checkpoint(
os.path.join(args.output_dir, "checkpoint.pth.tar"),
run_variables=to_restore,
state_dict=linear_classifier,
optimizer=optimizer,
scheduler=scheduler,
)
start_epoch = to_restore["epoch"]
best_acc = to_restore["best_acc"]
for epoch in range(start_epoch, args.epochs):
train_loader.sampler.set_epoch(epoch)
train_stats = train(
model,
linear_classifier,
optimizer,
train_loader,
epoch,
args.n_last_blocks,
args.avgpool_patchtokens,
)
scheduler.step()
log_stats = {
**{f"train_{k}": v for k, v in train_stats.items()},
"epoch": epoch,
}
if epoch % args.val_freq == 0 or epoch == args.epochs - 1:
test_stats = validate_network(
val_loader,
model,
linear_classifier,
args.n_last_blocks,
args.avgpool_patchtokens,
)
print(
f"Accuracy at epoch {epoch} of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%"
)
best_acc = max(best_acc, test_stats["acc1"])
print(f"Max accuracy so far: {best_acc:.2f}%")
log_stats = {
**{k: v for k, v in log_stats.items()},
**{f"test_{k}": v for k, v in test_stats.items()},
}
if utils.is_main_process():
with (Path(args.output_dir) / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
save_dict = {
"epoch": epoch + 1,
"state_dict": linear_classifier.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"best_acc": best_acc,
}
torch.save(save_dict, os.path.join(args.output_dir, "checkpoint.pth.tar"))
print(
"Training of the supervised linear classifier on frozen features completed.\n"
"Top-1 test accuracy: {acc:.1f}".format(acc=best_acc)
)
def train(model, linear_classifier, optimizer, loader, epoch, n, avgpool):
linear_classifier.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value:.6f}"))
header = "Epoch: [{}]".format(epoch)
for (inp, target) in metric_logger.log_every(loader, 20, header):
# move to gpu
inp = inp.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# forward
with torch.no_grad():
if "vit" in args.arch:
intermediate_output = model.get_intermediate_layers(inp, n)
output = torch.cat([x[:, 0] for x in intermediate_output], dim=-1)
if avgpool:
output = torch.cat(
(
output.unsqueeze(-1),
torch.mean(intermediate_output[-1][:, 1:], dim=1).unsqueeze(
-1
),
),
dim=-1,
)
output = output.reshape(output.shape[0], -1)
else:
output = model(inp)
output = linear_classifier(output)
# compute cross entropy loss
loss = nn.CrossEntropyLoss()(output, target)
# compute the gradients
optimizer.zero_grad()
loss.backward()
# step
optimizer.step()
# log
torch.cuda.synchronize()
metric_logger.update(loss=loss.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def validate_network(val_loader, model, linear_classifier, n, avgpool):
linear_classifier.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = "Test:"
for inp, target in metric_logger.log_every(val_loader, 20, header):
# move to gpu
inp = inp.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# forward
with torch.no_grad():
if "vit" in args.arch:
intermediate_output = model.get_intermediate_layers(inp, n)
output = torch.cat([x[:, 0] for x in intermediate_output], dim=-1)
if avgpool:
output = torch.cat(
(
output.unsqueeze(-1),
torch.mean(intermediate_output[-1][:, 1:], dim=1).unsqueeze(
-1
),
),
dim=-1,
)
output = output.reshape(output.shape[0], -1)
else:
output = model(inp)
output = linear_classifier(output)
loss = nn.CrossEntropyLoss()(output, target)
if linear_classifier.module.num_labels >= 5:
acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
else:
(acc1,) = utils.accuracy(output, target, topk=(1,))
batch_size = inp.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters["acc1"].update(acc1.item(), n=batch_size)
if linear_classifier.module.num_labels >= 5:
metric_logger.meters["acc5"].update(acc5.item(), n=batch_size)
if linear_classifier.module.num_labels >= 5:
print(
"* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}".format(
top1=metric_logger.acc1,
top5=metric_logger.acc5,
losses=metric_logger.loss,
)
)
else:
print(
"* Acc@1 {top1.global_avg:.3f} loss {losses.global_avg:.3f}".format(
top1=metric_logger.acc1, losses=metric_logger.loss
)
)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
class LinearClassifier(nn.Module):
"""Linear layer to train on top of frozen features"""
def __init__(self, dim, num_labels=1000):
super(LinearClassifier, self).__init__()
self.num_labels = num_labels
self.linear = nn.Linear(dim, num_labels)
self.linear.weight.data.normal_(mean=0.0, std=0.01)
self.linear.bias.data.zero_()
def forward(self, x):
# flatten
x = x.view(x.size(0), -1)
# linear layer
return self.linear(x)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
"Evaluation with linear classification on ImageNet"
)
parser.add_argument(
"--n_last_blocks",
default=4,
type=int,
help="""Concatenate [CLS] tokens
for the `n` last blocks. We use `n=4` when evaluating ViT-Small and `n=1` with ViT-Base.""",
)
parser.add_argument(
"--avgpool_patchtokens",
default=False,
type=utils.bool_flag,
help="""Whether ot not to concatenate the global average pooled features to the [CLS] token.
We typically set this to False for ViT-Small and to True with ViT-Base.""",
)
parser.add_argument("--arch", default="vit_small", type=str, help="Architecture")
parser.add_argument(
"--patch_size", default=16, type=int, help="Patch resolution of the model."
)
parser.add_argument(
"--pretrained_weights",
default="",
type=str,
help="Path to pretrained weights to evaluate.",
)
parser.add_argument(
"--checkpoint_key",
default="teacher",
type=str,
help='Key to use in the checkpoint (example: "teacher")',
)
parser.add_argument(
"--epochs", default=100, type=int, help="Number of epochs of training."
)
parser.add_argument(
"--lr",
default=0.001,
type=float,
help="""Learning rate at the beginning of
training (highest LR used during training). The learning rate is linearly scaled
with the batch size, and specified here for a reference batch size of 256.
We recommend tweaking the LR depending on the checkpoint evaluated.""",
)
parser.add_argument(
"--batch_size_per_gpu", default=128, type=int, help="Per-GPU batch-size"
)
parser.add_argument(
"--dist_url",
default="env://",
type=str,
help="""url used to set up
distributed training; see https://pytorch.org/docs/stable/distributed.html""",
)
parser.add_argument(
"--local_rank",
default=0,
type=int,
help="Please ignore and do not set this argument.",
)
parser.add_argument("--data_path", default="/path/to/imagenet/", type=str)
parser.add_argument(
"--num_workers",
default=10,
type=int,
help="Number of data loading workers per GPU.",
)
parser.add_argument(
"--val_freq", default=1, type=int, help="Epoch frequency for validation."
)
parser.add_argument(
"--output_dir", default=".", help="Path to save logs and checkpoints"
)
parser.add_argument(
"--num_labels",
default=1000,
type=int,
help="Number of labels for linear classifier",
)
parser.add_argument(
"--evaluate",
dest="evaluate",
action="store_true",
help="evaluate model on validation set",
)
args = parser.parse_args()
eval_linear(args)
|