File size: 14,702 Bytes
1803579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# Code for Peekaboo
# Author: Hasib Zunair
# Modified from https://github.com/valeoai/FOUND

"""Training code for Peekaboo"""

import os
import sys
import json
import argparse

import torch
import torch.nn as nn
import torchvision
from tqdm import tqdm

from model import PeekabooModel
from evaluation.saliency import evaluate_saliency
from misc import batch_apply_bilateral_solver, set_seed, load_config, Logger

from datasets.datasets import build_dataset


def get_argparser():
    parser = argparse.ArgumentParser(
        description="Training of Peekaboo",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )
    parser.add_argument("--exp-name", type=str, default=None, help="Exp name.")
    parser.add_argument(
        "--log-dir", type=str, default="outputs", help="Logging and output directory."
    )
    parser.add_argument(
        "--dataset-dir",
        type=str,
        required=True,
        help="Root directories of training and evaluation datasets.",
    )
    parser.add_argument(
        "--config",
        type=str,
        default="configs/peekaboo_DUTS-TR.yaml",
        help="Path of config file.",
    )
    parser.add_argument(
        "--save-model-freq", type=int, default=250, help="Frequency of model saving."
    )
    parser.add_argument(
        "--visualization-freq",
        type=int,
        default=10,
        help="Frequency of prediction visualization in tensorboard.",
    )

    args = parser.parse_args()
    return args


def train_model(
    model,
    config,
    dataset,
    dataset_dir,
    visualize_freq=10,
    save_model_freq=500,
    tensorboard_log_dir=None,
):

    # Diverse
    print(f"Data will be saved in {tensorboard_log_dir}")
    save_dir = tensorboard_log_dir
    if tensorboard_log_dir is not None:
        # Logging
        if not os.path.exists(tensorboard_log_dir):
            os.makedirs(tensorboard_log_dir)
        from torch.utils.tensorboard import SummaryWriter

        writer = SummaryWriter(tensorboard_log_dir)

    # Deconvolution, train only the decoder
    sigmoid = nn.Sigmoid()
    model.decoder.train()
    model.decoder.to("cuda")

    ################################################################################
    #                                                                              #
    #                      Setup loss, optimizer and scheduler                     #
    #                                                                              #
    ################################################################################
    criterion = nn.BCEWithLogitsLoss()
    criterion_mse = nn.MSELoss()
    optimizer = torch.optim.AdamW(model.decoder.parameters(), lr=config.training["lr0"])
    scheduler = torch.optim.lr_scheduler.StepLR(
        optimizer,
        step_size=config.training["step_lr_size"],
        gamma=config.training["step_lr_gamma"],
    )

    ################################################################################
    #                                                                              #
    #                                Dataset                                       #
    #                                                                              #
    ################################################################################

    trainloader = torch.utils.data.DataLoader(
        dataset, batch_size=config.training["batch_size"], shuffle=True, num_workers=2
    )

    ################################################################################
    #                                                                              #
    #                                Training loop                                 #
    #                                                                              #
    ################################################################################

    n_iter = 0
    for epoch in range(config.training["nb_epochs"]):
        running_loss = 0.0
        tbar = tqdm(enumerate(trainloader, 0), leave=None)
        for i, data in tbar:

            # Get the inputs
            inputs, masked_inputs, _, input_nonorm, masked_input_nonorm, _, _ = data

            ######## For debug #######
            # def to_img(ten):
            #     #ten =(input_nonorm[0].permute(1,2,0).detach().cpu().numpy()+1)/2
            #     ten =(ten.permute(1,2,0).detach().cpu().numpy())
            #     ten=(ten*255).astype(np.uint8)
            #     #ten=cv2.cvtColor(ten,cv2.COLOR_RGB2BGR)
            #     return ten
            # import pdb; pdb.set_trace()
            # im = to_img(input_nonorm[0])
            # plt.imshow(im); plt.show()

            # Inputs and masked inputs
            inputs = inputs.to("cuda")
            masked_inputs = masked_inputs.to("cuda")

            # zero the parameter gradients
            optimizer.zero_grad()

            ################################################################################
            #                                                                              #
            #                                Unsupervised Segmenter                        #
            #                                                                              #
            ################################################################################

            # Get predictions
            preds = model(inputs)
            # Binarization
            preds_mask = (sigmoid(preds.detach()) > 0.5).float()
            # Apply bilateral solver
            preds_mask_bs, _ = batch_apply_bilateral_solver(data, preds_mask.detach())
            # Flatten
            flat_preds = preds.permute(0, 2, 3, 1).reshape(-1, 1)

            #### Compute unsupervised segmenter loss ####
            alpha = 1.5
            preds_bs_loss = alpha * criterion(
                flat_preds, preds_mask_bs.reshape(-1).float()[:, None]
            )
            print(preds_bs_loss)
            writer.add_scalar("Loss/L_seg", preds_bs_loss, n_iter)
            loss = preds_bs_loss

            ################################################################################
            #                                                                              #
            #                            Masked Feature Predictor (MFP)                    #
            #                                                                              #
            ################################################################################

            # Get predictions
            preds_mfp = model(masked_inputs)
            # Binarization
            preds_mask_mfp = (sigmoid(preds_mfp.detach()) > 0.5).float()
            # Apply bilateral solver
            preds_mask_mfp_bs, _ = batch_apply_bilateral_solver(
                data, preds_mask_mfp.detach()
            )
            # Flatten
            flat_preds_mfp = preds_mfp.permute(0, 2, 3, 1).reshape(-1, 1)

            #### Compute masked feature predictor loss ####
            beta = 1.0
            preds_bs_cb_loss = beta * criterion(
                flat_preds_mfp, preds_mask_mfp_bs.reshape(-1).float()[:, None]
            )
            writer.add_scalar("Loss/L_mfp", preds_bs_cb_loss, n_iter)
            loss += preds_bs_cb_loss

            ################################################################################
            #                                                                              #
            #                       Predictor Consistency Loss (PCL)                       #
            #                                                                              #
            ################################################################################

            gamma = 1.0
            task_sim_loss = gamma * criterion_mse(
                preds_mask_bs.reshape(-1).float()[:, None],
                preds_mask_mfp_bs.reshape(-1).float()[:, None],
            )
            writer.add_scalar("Loss/L_pcl", task_sim_loss, n_iter)
            loss += task_sim_loss

            ### Compute loss between soft masks and their binarized versions ####
            self_loss = criterion(flat_preds, preds_mask.reshape(-1).float()[:, None])

            self_loss = self_loss * 4.0
            loss += self_loss
            writer.add_scalar("Loss/L_regularization", self_loss, n_iter)

            ################################################################################
            #                                                                              #
            #                       Update weights and scheduler step                      #
            #                                                                              #
            ################################################################################

            loss.backward()
            optimizer.step()
            writer.add_scalar("Loss/total_loss", loss, n_iter)
            writer.add_scalar("params/lr", optimizer.param_groups[0]["lr"], n_iter)
            scheduler.step()

            ################################################################################
            #                                                                              #
            #                       Visualize predictions and show stats                   #
            #                                                                              #
            ################################################################################

            # Visualize predictions in tensorboard
            if n_iter % visualize_freq == 0:
                # images and predictions
                grid = torchvision.utils.make_grid(input_nonorm[:5])
                writer.add_image("training/images", grid, n_iter)
                p_grid = torchvision.utils.make_grid(preds_mask[:5])
                writer.add_image("training/preds", p_grid, n_iter)

                # masked images and predictions
                m_grid = torchvision.utils.make_grid(masked_input_nonorm[:5])
                writer.add_image("training/masked_images", m_grid, n_iter)
                mp_grid = torchvision.utils.make_grid(preds_mask_mfp[:5])
                writer.add_image("training/masked_preds", mp_grid, n_iter)
            # Statistics
            running_loss += loss.item()
            tbar.set_description(
                f"{dataset.name}| train | iter {n_iter} | loss: ({running_loss / (i + 1):.3f}) "
            )

            ################################################################################
            #                                                                              #
            #                           Save model and evaluate                            #
            #                                                                              #
            ################################################################################

            # Save model
            if n_iter % save_model_freq == 0 and n_iter > 0:
                model.decoder_save_weights(save_dir, n_iter)

            # Evaluation
            if n_iter % config.evaluation["freq"] == 0 and n_iter > 0:
                for dataset_eval_name in config.evaluation["datasets"]:
                    val_dataset = build_dataset(
                        root_dir=dataset_dir,
                        dataset_name=dataset_eval_name,
                        for_eval=True,
                        dataset_set=None,
                    )
                    evaluate_saliency(
                        val_dataset, model=model, n_iter=n_iter, writer=writer
                    )

            if n_iter == config.training["max_iter"]:
                model.decoder_save_weights(save_dir, n_iter)
                print("\n----" "\nTraining done.")
                writer.close()
                return model

            n_iter += 1

        print(f"##### Number of epoch is {epoch} and n_iter is {n_iter} #####")

    # Save model
    model.decoder_save_weights(save_dir, n_iter)
    print("\n----" "\nTraining done.")
    writer.close()
    return model


def main():

    ########## Get arguments ##########

    args = get_argparser()

    ########## Setup ##########

    # Load config yaml file
    config, config_ = load_config(args.config)

    # Experiment name
    exp_name = "{}-{}{}".format(
        config.training["dataset"], config.model["arch"], config.model["patch_size"]
    )

    if args.exp_name is not None:
        exp_name = f"{args.exp_name}-{exp_name}"

    # Log dir
    output_dir = os.path.join(args.log_dir, exp_name)

    # Logging
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    # Save config
    with open(f"{output_dir}/config.json", "w") as f:
        print(f"Config saved in {output_dir}/config.json.")
        json.dump(args.__dict__, f)

    # Save output of terminal in log file
    sys.stdout = Logger(os.path.join(output_dir, "log_train.txt"))
    arguments = str(args).split(", ")
    print("=========================\nConfigs:{}\n=========================")
    for i in range(len(arguments)):
        print(arguments[i])
    print(
        "Hyperparameters from config file: "
        + ", ".join(f"{k}={v}" for k, v in config_.items())
    )
    print("=========================")

    ########## Reproducibility ##########

    set_seed(config.training["seed"])

    ########## Build training set ##########

    dataset = build_dataset(
        root_dir=args.dataset_dir,
        dataset_name=config.training["dataset"],
        dataset_set=config.training["dataset_set"],
        config=config,
        for_eval=False,
    )

    dataset_set = config.training["dataset_set"]
    str_set = dataset_set if dataset_set is not None else ""
    print(f"\nBuilding dataset {dataset.name}{str_set} of {len(dataset)}")

    ########## Define Peekaboo ##########

    model = PeekabooModel(
        vit_model=config.model["pre_training"],
        vit_arch=config.model["arch"],
        vit_patch_size=config.model["patch_size"],
        enc_type_feats=config.peekaboo["feats"],
    )

    ########## Training and evaluation ##########

    print(f"\nStarted training on {dataset.name} [tensorboard dir: {output_dir}]")
    model = train_model(
        model=model,
        config=config,
        dataset=dataset,
        dataset_dir=args.dataset_dir,
        tensorboard_log_dir=output_dir,
        visualize_freq=args.visualization_freq,
        save_model_freq=args.save_model_freq,
    )
    print(f"\nTraining done, Peekaboo model saved in {output_dir}.")


if __name__ == "__main__":
    main()