File size: 8,017 Bytes
46fdf2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import json
import glob
import random
from torch.utils.data import Dataset
from PIL import Image
from torchvision.transforms import transforms
import torch
import numpy as np
try:
from torchvision.transforms import InterpolationMode
BICUBIC = InterpolationMode.BICUBIC
except ImportError:
BICUBIC = Image.BICUBIC
# modify for transformation for vit
# modfify wider crop-person images
###### Base data loader ######
class DataSet(Dataset):
def __init__(
self,
ann_files,
augs,
img_size,
dataset,
):
self.dataset = dataset
self.ann_files = ann_files
self.augment = self.augs_function(augs, img_size)
self.transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize(mean=[0, 0, 0], std=[1, 1, 1])]
# In this paper, we normalize the image data to [0, 1]
# You can also use the so called 'ImageNet' Normalization method
)
self.anns = []
self.load_anns()
print(self.augment)
# in wider dataset we use vit models
# so transformation has been changed
if self.dataset == "wider":
self.transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
]
)
def augs_function(self, augs, img_size):
t = []
if "randomflip" in augs:
t.append(transforms.RandomHorizontalFlip())
if "ColorJitter" in augs:
t.append(
transforms.ColorJitter(
brightness=0.5, contrast=0.5, saturation=0.5, hue=0
)
)
if "resizedcrop" in augs:
t.append(transforms.RandomResizedCrop(img_size, scale=(0.7, 1.0)))
if "RandAugment" in augs:
t.append(RandAugment())
t.append(transforms.Resize((img_size, img_size)))
return transforms.Compose(t)
def load_anns(self):
self.anns = []
for ann_file in self.ann_files:
json_data = json.load(open(ann_file, "r"))
self.anns += json_data
def __len__(self):
return len(self.anns)
def __getitem__(self, idx):
idx = idx % len(self)
ann = self.anns[idx]
img = Image.open(ann["img_path"]).convert("RGB")
if self.dataset == "wider":
x, y, w, h = ann["bbox"]
img_area = img.crop([x, y, x + w, y + h])
img_area = self.augment(img_area)
img_area = self.transform(img_area)
message = {
"img_path": ann["img_path"],
"target": torch.Tensor(ann["target"]),
"img": img_area,
}
else: # voc and coco
img = self.augment(img)
img = self.transform(img)
message = {
"img_path": ann["img_path"],
"target": torch.Tensor(ann["target"]),
"img": img,
}
return message
# finally, if we use dataloader to get the data, we will get
# {
# "img_path": list, # length = batch_size
# "target": Tensor, # shape: batch_size * num_classes
# "img": Tensor, # shape: batch_size * 3 * 224 * 224
# }
def preprocess_scribble(img, img_size):
transform = transforms.Compose(
[
transforms.Resize(img_size, BICUBIC),
transforms.CenterCrop(img_size),
#_convert_image_to_rgb,
transforms.ToTensor(),
]
)
return transform(img)
class DataSetMaskSup(Dataset):
"""
Data loader with scribbles.
"""
def __init__(
self,
ann_files,
augs,
img_size,
dataset,
):
self.dataset = dataset
self.ann_files = ann_files
self.img_size = img_size
self.augment = self.augs_function(augs, img_size)
self.transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize(mean=[0, 0, 0], std=[1, 1, 1])]
# In this paper, we normalize the image data to [0, 1]
# You can also use the so called 'ImageNet' Normalization method
)
self.anns = []
self.load_anns()
print(self.augment)
# scribbles
self._scribbles_folder = "./datasets/SCRIBBLES"
# Type of masks to use, this is hardcoded since we find that high masks
# work better in MSL. See paper for details.
# for low masks
# self._scribbles = sorted(glob.glob(self._scribbles_folder + "/*.png"))[
# :1000
# ]
# for high masks
self._scribbles = sorted(glob.glob(self._scribbles_folder + "/*.png"))[::-1][
:1000
]
# in wider dataset we use vit models
# so transformation has been changed
if self.dataset == "wider":
self.transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
]
)
def augs_function(self, augs, img_size):
t = []
if "randomflip" in augs:
t.append(transforms.RandomHorizontalFlip())
if "ColorJitter" in augs:
t.append(
transforms.ColorJitter(
brightness=0.5, contrast=0.5, saturation=0.5, hue=0
)
)
if "resizedcrop" in augs:
t.append(transforms.RandomResizedCrop(img_size, scale=(0.7, 1.0)))
if "RandAugment" in augs:
t.append(RandAugment())
t.append(transforms.Resize((img_size, img_size)))
return transforms.Compose(t)
def load_anns(self):
self.anns = []
for ann_file in self.ann_files:
json_data = json.load(open(ann_file, "r"))
self.anns += json_data
def __len__(self):
return len(self.anns)
def __getitem__(self, idx):
idx = idx % len(self)
ann = self.anns[idx]
img = Image.open(ann["img_path"]).convert("RGB")
# get scribble
scribble_path = self._scribbles[
random.randint(0, 950)
]
scribble = Image.open(scribble_path).convert('P')
scribble = preprocess_scribble(scribble, self.img_size)
scribble_t = (scribble > 0).float() # threshold to [0,1]
inv_scribble = (torch.max(scribble_t) - scribble_t) # inverted scribble
if self.dataset == "wider":
x, y, w, h = ann["bbox"]
img_area = img.crop([x, y, x + w, y + h])
img_area = self.augment(img_area)
img_area = self.transform(img_area)
# masked image
masked_image = img_area * inv_scribble
message = {
"img_path": ann["img_path"],
"target": torch.Tensor(ann["target"]),
"img": img_area,
"masked_img": masked_image,
#"scribble": inv_scribble,
}
else: # voc and coco
img = self.augment(img)
img = self.transform(img)
# masked image
masked_image = img * inv_scribble
message = {
"img_path": ann["img_path"],
"target": torch.Tensor(ann["target"]),
"img": img,
"masked_img": masked_image,
#"scribble": inv_scribble,
}
return message
# finally, if we use dataloader to get the data, we will get
# {
# "img_path": list, # length = batch_size
# "target": Tensor, # shape: batch_size * num_classes
# "img": Tensor, # shape: batch_size * 3 * 224 * 224
# "masked_img": Tensor, # shape: batch_size * 3 * 224 * 224
# }
|