Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	File size: 28,760 Bytes
			
			| 01d5a5d e09e6c3 01d5a5d | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 | import logging
from enum import Enum
import tiktoken
import re
from typing import Any, Optional, Union, Collection, AbstractSet, Literal, List
from langchain.text_splitter import TextSplitter
import random
import string
from itertools import chain
import json
from lpm_kernel.configs.logging import get_train_process_logger
logger = get_train_process_logger()
class IntentType(Enum):
    Emotion = "Emotion"
    Knowledge = "Knowledge"
def select_language_desc(
    preferred_language,
    default_desc="Identify the language of the provided Hint. Your response must be in the same language.",
):
    custom_desc = "You must respond in {}."
    if isinstance(preferred_language, str) and "/" in preferred_language:
        native, es = preferred_language.split("/")
        logging.info(f"Native: {native}, ES: {es}")
        return custom_desc.format(es)
    else:
        logging.info(
            "Error: preferred_language is not in the correct format. It should be 'native/es'."
        )
        return default_desc
def cal_upperbound(
    model_limit: int = 4096,
    generage_limit: int = 512,
    tolerance: int = 500,
    raw: str = "",
    model_name: str = "gpt-3.5-turbo",
) -> int:
    """
    :param model_limit: Maximum token count for the underlying model call
    :param tolerance: Error tolerance buffer
    :param raw: system prompt and raw content
    :return:
    """
    if model_name is not None:
        if model_name in tiktoken.model.MODEL_TO_ENCODING:
            enc = tiktoken.encoding_for_model(model_name)
            logging.info(f"Successfully initialized tokenizer for model: {model_name}")
        else:
            enc = tiktoken.get_encoding("cl100k_base")
            logging.warning(f"Model '{model_name}' doesn't have a corresponding tokenizer, falling back to default: cl100k_base")
    else:
        enc = tiktoken.get_encoding("cl100k_base")
        logging.info(f"No model specified, using default tokenizer: cl100k_base")
    raw_token = len(enc.encode(raw))
    upper_bound = model_limit - raw_token - tolerance - generage_limit
    if upper_bound < 0:
        logging.info(f"raw content is too long: {raw_token}")
        return 0
    return upper_bound
def equidistant_filter(chunks, separator, filtered_chunks_n=6):
    # Select the first and last two chunks, sample the remaining chunks evenly from the middle
    gap = (len(chunks) - 2) / (filtered_chunks_n - 2)
    indexes = [
        int(gap * i)
        for i in range(int(len(chunks) / gap) + 1)
        if (gap * i < len(chunks) - 2)
    ]
    filtered_chunks = [chunks[i] for i in indexes]
    filtered_chunks.append(separator.join(chunks[-2:]))
    return filtered_chunks
def tab_or_space_replacement(match):
    # If there is a tab character in the matched string, replace it with a single tab, otherwise replace it with a single space
    return "\t" if "\t" in match.group() else " "
def text_filter(text: str) -> str:
    pattern_tab_space = "[ \t]{3,}"
    pattern_wordwrap = "[\n\f\r\v]{3,}"
    # Replace when encountering three or more spaces or tabs
    replaced_text = re.sub(pattern_tab_space, tab_or_space_replacement, text)
    # When there are multiple consecutive \n (newline), \f (form feed), \r (carriage return), \v (vertical tab), replace them with 2 original newlines
    replaced_text = re.sub(pattern_wordwrap, "\n\n", replaced_text)
    return replaced_text
ALLOW_SPECIAL_TOKEN = {"<|endofprompt|>", "<|endoftext|>"}
def find_sublist_indices(main_list, sublist):
    indices = []
    length = len(sublist)
    for i in range(len(main_list) - length + 1):
        if main_list[i : i + length] == sublist:
            indices.append((i, i + length))
    return indices
class TokenTextSplitter(TextSplitter):
    """Implementation of splitting text that looks at tokens."""
    def __init__(
        self,
        encoding_name: str = "cl100k_base",
        model_name: Optional[str] = None,
        allowed_special: Union[Literal["all"], AbstractSet[str]] = ALLOW_SPECIAL_TOKEN,
        disallowed_special: Union[Literal["all"], Collection[str]] = "all",
        **kwargs: Any,
    ):
        """Create a new TextSplitter."""
        super().__init__(**kwargs)
        try:
            import tiktoken
        except ImportError:
            raise ValueError(
                "Could not import tiktoken python package. "
                "This is needed in order to for TokenTextSplitter. "
                "Please it install it with `pip install tiktoken`."
            )
        # create a GPT-3 encoder instance
        if model_name is not None:
            if model_name in tiktoken.model.MODEL_TO_ENCODING:
                enc = tiktoken.encoding_for_model(model_name)
                logging.info(f"Successfully initialized tokenizer for model: {model_name}")
            else:
                enc = tiktoken.get_encoding(encoding_name)
                logging.warning(f"Model '{model_name}' doesn't have a corresponding tokenizer, falling back to default: {encoding_name}")
        else:
            enc = tiktoken.get_encoding(encoding_name)
            logging.info(f"No model specified, using default tokenizer: {encoding_name}")
        self._tokenizer = enc
        self._allowed_special = allowed_special
        self._disallowed_special = disallowed_special
    def split_text(self, text: str) -> List[str]:
        """Split incoming text and return chunks."""
        # Filter content with a large number of whitespace characters in the input text to increase the proportion of effective content within chunks
        text = text_filter(text)
        splits = []
        input_ids = self._tokenizer.encode(
            text,
            allowed_special=self._allowed_special,
            disallowed_special=self._disallowed_special,
        )
        start_idx = 0
        while start_idx < len(input_ids):
            cur_idx = min(start_idx + self._chunk_size, len(input_ids))
            chunk_ids = input_ids[start_idx:cur_idx]
            s = self._tokenizer.decode(chunk_ids).strip()
            if s:
                s = self._cut_meaningless_head_tail(s)
                if s:
                    splits.append(s)
            start_idx += self._chunk_size - self._chunk_overlap
        logging.debug("finished split_text(): %s splits", len(splits))
        return splits
    def _cut_meaningless_head_tail(self, text: str) -> str:
        # Only split when there are multiple newlines, as parsing of PDF/Word often contains false newlines
        sentences = re.split(r"\. |! |\? |。|!|?|\n+ *\n+", text)
        if len(sentences) < 2:
            return text
        head = sentences[0]
        body = ". ".join(sentences[1:-1])
        tail = sentences[-1]
        head_len = len(
            self._tokenizer.encode(
                body,
                allowed_special=self._allowed_special,
                disallowed_special=self._disallowed_special,
            )
        )
        body_len = len(
            self._tokenizer.encode(
                body,
                allowed_special=self._allowed_special,
                disallowed_special=self._disallowed_special,
            )
        )
        tail_len = len(
            self._tokenizer.encode(
                tail,
                allowed_special=self._allowed_special,
                disallowed_special=self._disallowed_special,
            )
        )
        parts = []
        # Use length to roughly estimate the impact of discarding the tail; if the impact is not significant, discard it
        # Rough estimate: Chinese 20 tokens, 8 characters; English 10 tokens, 30 characters
        if head_len >= 20 or len(head) >= 30:
            parts.append(head)
        if body_len > 0:
            parts.append(body)
        if tail_len >= 20 or len(tail) >= 30:
            parts.append(tail)
        res = "\n".join(parts)
        logger.info(
            "_cut_meaningless_tail() removes redundant sentence tails from chunks, before cut: %s characters, after cut: %s characters",
            len(text),
            len(res),
        )
        return res
def chunk_filter(
    chunks, filter, filtered_chunks_n=6, separator="\n", spacer="\n……\n……\n……\n"
):
    if len(chunks) <= filtered_chunks_n:
        return separator.join(chunks)
    return spacer.join(filter(chunks, separator, filtered_chunks_n))
def get_safe_content_turncate(content, model_name="gpt-3.5-turbo", max_tokens=3300):
    if model_name is not None:
        if model_name in tiktoken.model.MODEL_TO_ENCODING:
            enc = tiktoken.encoding_for_model(model_name)
            logging.info(f"Successfully initialized tokenizer for model: {model_name}")
        else:
            enc = tiktoken.get_encoding("cl100k_base")
            logging.warning(f"Model '{model_name}' doesn't have a corresponding tokenizer, falling back to default: cl100k_base")
    else:
        enc = tiktoken.get_encoding("cl100k_base")
        logging.info(f"No model specified, using default tokenizer: cl100k_base")
    logging.warning(
        "get_safe_content_turncate(): current model maximum input length is %s, current input length is %s",
        max_tokens,
        len(enc.encode(content)),
    )
    if len(enc.encode(content)) > max_tokens:
        content = enc.decode(enc.encode(content)[:max_tokens])
    return content
class DataType(Enum):
    DOCUMENT = "DOCUMENT"
    WEBSITE = "WEBSITE"
    IMAGE = "IMAGE"
    TABLE = "TABLE"
    AUDIO = "AUDIO"
    TEXT = "TEXT"
    @staticmethod
    def extra_values_map():
        return {
            "SHORT_AUDIO": "AUDIO",
        }
    @classmethod
    def _missing_(cls, value):
        # Try to find the corresponding primary key value from the extra value mapping
        extra_map = cls.extra_values_map()
        if value in extra_map:
            value = extra_map[value]
            return cls.__members__.get(value)
        # If not found, return DOCUMENT by default
        logging.error("DataType._missing_(): Could not find corresponding DataType enum value: %s", value)
        return cls.DOCUMENT
def get_urls(string):
    url_arr = []
    if not string:
        return url_arr
    pattern = re.compile(
        r"(https?|ftp|file)://[-A-Za-z0-9+&@#/%?=~_|!:,.;\u4e00-\u9fa5]+[-A-Za-z0-9+&@#/%=~_|]"
    )
    matcher = pattern.finditer(string)
    for match in matcher:
        url_arr.append(match.group())
    sorted_url_arr = sorted(set(url_arr), key=len, reverse=True)
    return sorted_url_arr
def get_random_string(s_length: int) -> str:
    # Generate a random string
    letters = string.ascii_letters + string.digits
    return "".join(random.choice(letters) for i in range(s_length))
def get_random_strings(n: int, s_length: int) -> List[str]:
    unique_strings = set()
    while len(unique_strings) < n:
        unique_strings.add(get_random_string(s_length))
    return list(unique_strings)
def encode_urls(text, random_string_len: int = 16):
    urls = get_urls(text)
    random_strings = get_random_strings(len(urls), random_string_len)
    url2string_dict = dict(zip(urls, random_strings))
    string2url_dict = dict(zip(random_strings, urls))
    for url, random_string in url2string_dict.items():
        text = text.replace(url, random_string)
    return text, string2url_dict
def decode_urls(text, string2url_dict):
    for random_string, url in string2url_dict.items():
        text = text.replace(random_string, url)
    return text
class TokenParagraphSplitter(TextSplitter):
    """For business data characteristics, perform some additional processing. This includes:
    1. Complete fragments as independent chunks help improve information focus in each chunk. Complete fragments are mainly determined by period+newline.
    2. When complete fragments are too long, split them into sentences and combine sentences into chunks that meet window size limits
    3. If a sentence is too long, split it directly by token granularity
    """
    line_break_characters = ["\n", "\f", "\r", "\v"]
    whitespace_characters = [" ", "\t"]
    sentence_terminators = [
        ".",
        "!",
        "?",
        "。",
        "!",
        "?",
        "……",
        "...",
    ] + line_break_characters
    paired_punctuation = [
        ("(", ")"),
        ("[", "]"),
        ("{", "}"),
        ("<", ">"),
        ("“", "”"),
        ("‘", "’"),
        ("《", "》"),
        ("【", "】"),
    ]
    intra_sentence_delimiters = [",", ",", ";", ";"] + whitespace_characters
    def __init__(
        self,
        encoding_name: str = "cl100k_base",
        allowed_special: Union[Literal["all"], AbstractSet[str]] = ALLOW_SPECIAL_TOKEN,
        disallowed_special: Union[Literal["all"], Collection[str]] = "all",
        **kwargs: Any,
    ):
        """Create a new TextSplitter."""
        super().__init__(**kwargs)
        try:
            import tiktoken
        except ImportError:
            raise ValueError(
                "Could not import tiktoken python package. "
                "This is needed in order to for TokenTextSplitter. "
                "Please it install it with `pip install tiktoken`."
            )
        # create a GPT-3 encoder instance
        self._tokenizer = tiktoken.get_encoding(encoding_name)
        self._allowed_special = allowed_special
        self._disallowed_special = disallowed_special
    def split_text(self, text: str) -> List[str]:
        chunks = []
        # Clean up abnormal whitespace characters in the text, such as replacing 3 or more consecutive \n with \n\n
        text = text_filter(text)
        # Replace URLs in the text to avoid symbols like ./?/ in URLs interfering with sentence splitting
        text, string2url_dict = encode_urls(text)
        url_strings = list(string2url_dict.keys())
        # Split by paragraphs according to rules
        paragraphs = self._split_to_paragraphs(
            text, min_paragraph_length=self._chunk_size // 2
        )
        for i, paragraph in enumerate(paragraphs):
            splits = self._split_to_chunks(paragraph, url_strings)
            logging.debug(
                "paragraph %s/%s %s characters: %s",
                i + 1,
                len(paragraphs),
                len(paragraph),
                paragraph,
            )
            logging.debug(
                "paragraph %s/%s split into %s chunks: %s",
                i + 1,
                len(paragraphs),
                len(splits),
                splits,
            )
            chunks.extend(splits)
        chunks = [decode_urls(chunk, string2url_dict) for chunk in chunks]
        return chunks
    def _split_to_chunks(self, text: str, url_strings: List[str] = []) -> List[str]:
        sentences = self._split_to_sentences(text, url_strings)
        chunks = self._merge_sentences_into_chunks(
            sentences, min_chunk_size=self._chunk_size // 2
        )
        return chunks
    def _split_to_paragraphs(
        self, text: str, min_paragraph_length: int = 0
    ) -> List[str]:
        """Currently split the original document into paragraphs directly based on the \n[any space]\n rule."""
        line_break_characters = "".join(self.line_break_characters)
        whitespace_characters = "".join(self.whitespace_characters)
        paragraphs = re.split(
            f"([{line_break_characters}]+[{whitespace_characters}]*[{line_break_characters}])+",
            text,
        )
        if len(paragraphs) % 2 == 1:
            paragraphs = [""] + paragraphs
        paragraphs = [
            (paragraphs[i], paragraphs[i + 1])
            for i in range(0, len(paragraphs), 2)
            if (paragraphs[i] + paragraphs[i + 1]).strip()
        ]
        if not paragraphs:
            return []
        new_paragraphs = []
        cur_paragraph, cur_paragraph_len = "", 0
        # merge short or broken paragraphs
        for sep, paragraph in paragraphs:
            if cur_paragraph_len >= min_paragraph_length and any(
                cur_paragraph.endswith(sym) for sym in self.sentence_terminators
            ):
                new_paragraphs.append(cur_paragraph.strip())
                cur_paragraph, cur_paragraph_len = "", 0
            cur_paragraph_len += len(self._tokenizer.encode(sep + paragraph))
            cur_paragraph += sep + paragraph
        if cur_paragraph:
            new_paragraphs.append(cur_paragraph.strip())
        return new_paragraphs
    def _split_to_sentences(self, text: str, url_strings: List[str] = []) -> List[str]:
        # Use capture groups to preserve sentence separators
        pattern = (
            f"({'|'.join(re.escape(symbol) for symbol in self.sentence_terminators)})+"
        )
        parts = re.split(pattern, text)
        sentences = []
        # Merge by skipping steps to ensure punctuation is added to the end of the corresponding sentence
        if len(parts) % 2 == 1:
            parts.append("")
        sentences = ["".join(parts[i : i + 2]) for i in range(0, len(parts), 2)]
        sentences = [s for s in sentences if s.strip()]
        if not sentences:
            return []
        # Fix fragmented sentences, mainly for special cases such as numeric indices, floating-point numbers, etc., which may be separated
        sentences = self.recombine_broken_sentences(sentences)
        # Split sentences that are too long; in the short term, split directly by character length; future optimizations could consider splitting by punctuation within sentences
        sentences_list = [
            self._force_split_to_chunks(s, url_strings) for s in sentences
        ]
        sentences = list(chain.from_iterable(sentences_list))
        return sentences
    def recombine_broken_sentences(self, sentences: List[str]) -> List[str]:
        """Fix fragmented sentences, mainly for special cases such as numeric indices, floating-point numbers, etc., which may be separated。"""
        if len(sentences) < 2:
            return sentences
        open_symbols_dict = {
            open_sym: close_sym for open_sym, close_sym in self.paired_punctuation
        }
        close_symbols_dict = {
            close_sym: open_sym for open_sym, close_sym in self.paired_punctuation
        }
        new_sentences = []
        cur_sentences = ""
        unmatched_symbol = []
        for sent in sentences:
            # If the current sentence is not empty, doesn't meet predefined merge conditions, and has no pending matching punctuation ([, (, {, etc.), then consider the sentence complete
            if cur_sentences.strip() and not (
                self.check_merge(cur_sentences, sent) or unmatched_symbol
            ):
                new_sentences.append(cur_sentences)
                cur_sentences = ""
            for c in sent:
                if c in open_symbols_dict:
                    unmatched_symbol.append(c)
                elif c in close_symbols_dict:
                    if (
                        unmatched_symbol
                        and unmatched_symbol[-1] == close_symbols_dict[c]
                    ):
                        unmatched_symbol.pop()
                # By default, the current sentence ends when a newline-like character appears
                if c in self.line_break_characters:
                    unmatched_symbol = []
                    if cur_sentences.strip():
                        new_sentences.append(cur_sentences)
                        cur_sentences = ""
                cur_sentences += c
        if cur_sentences:
            new_sentences.append(cur_sentences)
        return new_sentences
    def check_merge(self, pre_sen, cur_sen):
        if len(pre_sen) > 1 and len(cur_sen) > 0:
            # If it's a decimal point in the middle of a floating-point number
            if pre_sen[-1] == "." and pre_sen[-2].isdigit() and cur_sen[0].isdigit():
                return True
            # If it's a numeric index at the beginning of a sentence, such as 1. *****\n2. *****
            if (
                pre_sen[-1] == "."
                and pre_sen[-2].isdigit()
                and cur_sen[0] not in self.line_break_characters
            ):
                return True
            # In markdown format, ! followed by [ may be an image link
            if (
                pre_sen[-1] == "!"
                and pre_sen[-2] in self.line_break_characters
                and cur_sen[0] == "["
            ):
                return True
        return False
    def _merge_sentences_into_chunks(
        self, sentences: List[str], min_chunk_size: int = 200
    ) -> List[str]:
        """Assemble into chunks according to chunk_size and overlap. Note that external guarantees ensure that the length of a single sentence does not exceed chunk_size"""
        if not sentences:
            return []
        n_tokens = [
            len(
                self._tokenizer.encode(
                    sentence,
                    allowed_special=self._allowed_special,
                    disallowed_special=self._disallowed_special,
                )
            )
            for sentence in sentences
        ]
        chunks = []
        start_idx = 0
        end_idx = start_idx + 1
        cur_token_num = n_tokens[start_idx]
        while start_idx < len(n_tokens):
            # Tail reaches the end point,
            if end_idx >= len(n_tokens):
                chunk = "".join(sentences[start_idx:end_idx])
                logging.debug(
                    "sentences[%s:%s] merged into chunk, current num_tokens: %s(%s)",
                    start_idx,
                    end_idx,
                    sum(n_tokens[start_idx:end_idx]),
                    cur_token_num,
                )
                chunks.append(chunk)
                break
            else:
                # +The next sentence will not exceed chunk_size, continue to include new sentences
                if cur_token_num + n_tokens[end_idx] <= self._chunk_size:
                    cur_token_num += n_tokens[end_idx]
                    end_idx += 1
                # +The next sentence will exceed chunk_size, assemble the current chunk and move to the next chunk
                else:
                    chunk = "".join(sentences[start_idx:end_idx])
                    logging.debug(
                        "sentences[%s:%s] merged into chunk, current num_tokens: %s(%s)",
                        start_idx,
                        end_idx,
                        sum(n_tokens[start_idx:end_idx]),
                        cur_token_num,
                    )
                    chunks.append(chunk)
                    # Next chunk: idx moves at least one position forward, start_idx allows overlap
                    end_idx = end_idx + 1
                    # Find a new starting point for start_idx that doesn't exceed the overlap
                    new_start_idx = end_idx - 1
                    overlap = 0
                    new_cur_token_num = n_tokens[new_start_idx]
                    while new_start_idx > start_idx + 1:
                        if (
                            overlap + n_tokens[new_start_idx - 1] >= self._chunk_overlap
                            or new_cur_token_num >= self._chunk_size
                        ):
                            break
                        new_start_idx -= 1
                        overlap += n_tokens[new_start_idx]
                        new_cur_token_num += n_tokens[new_start_idx]
                    start_idx = new_start_idx
                    cur_token_num = new_cur_token_num
        if len(chunks) > 1 and len(chunks[-1]) < min_chunk_size:
            logging.warning(
                "The last chunk length %s is less than %s, merge with the previous chunk",
                len(chunks[-1]),
                min_chunk_size,
            )
            last_chunk = chunks.pop()
            chunks[-1] += last_chunk
        chunks = [chunk for chunk in chunks if chunk.strip()]
        return chunks
    def _force_split_to_chunks(
        self, text: str, url_strings: List[str] = []
    ) -> List[str]:
        # TODO: In the future, consider adding forced splitting logic, such as: if a single sentence is too long, split by punctuation within the sentence, trying to preserve links and other data that require complete information
        """If a single sentence is too long, it can only be forcibly split, split by punctuation within the sentence, trying to preserve links and other data that require complete information"""
        splits = []
        input_ids = self._tokenizer.encode(
            text,
            allowed_special=self._allowed_special,
            disallowed_special=self._disallowed_special,
        )
        if len(input_ids) < self._chunk_size:
            return [text]
        if text[-1] not in self.sentence_terminators + self.intra_sentence_delimiters:
            text += self.sentence_terminators[0]
        cur_sentence, cur_sentence_len = "", 0
        sub_sentence = ""
        for c in text:
            sub_sentence += c
            if c in self.intra_sentence_delimiters + self.sentence_terminators:
                sub_sentence_len = len(self._tokenizer.encode(sub_sentence))
                if (
                    cur_sentence_len + sub_sentence_len
                    > self._chunk_size - self._chunk_overlap
                ):
                    if cur_sentence:
                        splits.append(cur_sentence)
                        cur_sentence, cur_sentence_len = sub_sentence, sub_sentence_len
                    else:
                        # This indicates that sub_sentence is too long, at this point directly follow the forced splitting logic based on tokens
                        _splits = self.safe_split(sub_sentence, url_strings)
                        splits.extend(_splits[:-1])
                        cur_sentence, cur_sentence_len = _splits[-1], len(_splits[-1])
                else:
                    cur_sentence += sub_sentence
                    cur_sentence_len += sub_sentence_len
                sub_sentence = ""
        if cur_sentence:
            splits.append(cur_sentence)
        return splits
    def safe_split(self, sub_sentence: str, url_strings: List[str] = []) -> List[str]:
        sub_sentence_tokens = self._tokenizer.encode(sub_sentence)
        # Find the position intervals of all strings in url_strings
        url_string_intervals = []
        for url_string in url_strings:
            encoded_url_string = self._tokenizer.encode(url_string)
            # Use find_sublist_indices to find all position intervals
            url_string_intervals.extend(
                find_sublist_indices(sub_sentence_tokens, encoded_url_string)
            )
        _splits = []
        i = 0
        while i < len(sub_sentence_tokens):
            if i + self._chunk_size >= len(sub_sentence_tokens):
                slice_end = len(sub_sentence_tokens)
            else:
                slice_end = i + self._chunk_size - self._chunk_overlap
            # Determine if the split interval overlaps with any important string intervals
            for s_begin, s_end in url_string_intervals:
                if i < s_end <= slice_end or i < s_begin < slice_end:
                    slice_end = max(slice_end, s_end)
            # Split and record the current chunk
            _splits.append(self._tokenizer.decode(sub_sentence_tokens[i:slice_end]))
            # Move to the starting point of the next chunk
            i = slice_end
        return _splits
def get_summarize_title_keywords(responses):
    # Clean LLM generated content to obtain summarized text titles, abstracts, and keywords
    pattern = re.compile(r"\{.*(\}|\]|\,)", re.DOTALL)
    gen_texts = [each.choices[0].message.content for each in responses]
    logging.info("gen_texts: %s", gen_texts)
    results = []
    for res in gen_texts:
        try:
            # Match against the pattern
            matches = list(pattern.finditer(res))
            if not matches:
                results.append(("", "", []))
            else:
                answer = matches[0].group(0)
                content = answer.strip().strip(",")
                content += "]" * (content.count("[") - content.count("]"))
                content += "}" * (content.count("{") - content.count("}"))
                d = json.loads(res)
                results.append(
                    (d.get("title", ""), d.get("summary", ""), d.get("keywords", []))
                )
        except json.JSONDecodeError:
            logging.warning("JSON parsing failed, returning empty list")
            results.append(("", "", []))
    return results
 | 
