File size: 10,407 Bytes
749930a
 
 
 
 
 
 
a869f80
ea75332
 
749930a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e86f428
749930a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba6da51
749930a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba6da51
 
749930a
ba6da51
 
749930a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import streamlit as st
import speech_recognition as sr
from googletrans import Translator
from gtts import gTTS
from playsound import playsound
from PIL import Image
from streamlit_mic_recorder import mic_recorder,speech_to_text
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import pipeline
#from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
# import logging
# import logging.handlers
# import queue
# import threading
# import time
# import urllib.request
# import os
# from collections import deque
# from pathlib import Path
# from typing import List

# import av
# import numpy as np
# import pydub
# import streamlit as st
# from twilio.rest import Client

# from streamlit_webrtc import WebRtcMode, webrtc_streamer
#from streamlit_mic_recorder import mic_recorder,speech_to_text
# Initialize the recognizer
recognizer = sr.Recognizer()

# Initialize the translator
translator = Translator()

# Language dictionary
language_dict = {
    'bengali': 'bn',
    'english': 'en',
    'gujarati': 'gu',
    'hindi': 'hi',
    'malayalam': 'ml',
    'marathi': 'mr',
    'nepali': 'ne',
    'odia': 'or',
    'punjabi': 'pa',
    'tamil': 'ta',
    'telugu': 'te',
    'urdu': 'ur',
}

# language_dict = {
#     'afrikaans': 'af',
#     'albanian': 'sq',
#     'amharic': 'am',
#     'arabic': 'ar',
#     'armenian': 'hy',
#     'azerbaijani': 'az',
#     'basque': 'eu',
#     'belarusian': 'be',
#     'bengali': 'bn',
#     'bosnian': 'bs',
#     'bulgarian': 'bg',
#     'catalan': 'ca',
#     'cebuano': 'ceb',
#     'chichewa': 'ny',
#     'chinese (simplified)': 'zh',
#     'chinese (traditional)': 'zh-TW',
#     'corsican': 'co',
#     'croatian': 'hr',
#     'czech': 'cs',
#     'danish': 'da',
#     'dutch': 'nl',
#     'english': 'en',
#     'esperanto': 'eo',
#     'estonian': 'et',
#     'filipino': 'tl',
#     'finnish': 'fi',
#     'french': 'fr',
#     'frisian': 'fy',
#     'galician': 'gl',
#     'georgian': 'ka',
#     'german': 'de',
#     'greek': 'el',
#     'gujarati': 'gu',
#     'haitian creole': 'ht',
#     'hausa': 'ha',
#     'hawaiian': 'haw',
#     'hebrew': 'he',
#     'hindi': 'hi',
#     'hmong': 'hmn',
#     'hungarian': 'hu',
#     'icelandic': 'is',
#     'igbo': 'ig',
#     'indonesian': 'id',
#     'irish': 'ga',
#     'italian': 'it',
#     'japanese': 'ja',
#     'javanese': 'jv',
#     'kannada': 'kn',
#     'kazakh': 'kk',
#     'khmer': 'km',
#     'kinyarwanda': 'rw',
#     'korean': 'ko',
#     'kurdish': 'ku',
#     'kyrgyz': 'ky',
#     'lao': 'lo',
#     'latin': 'la',
#     'latvian': 'lv',
#     'lithuanian': 'lt',
#     'luxembourgish': 'lb',
#     'macedonian': 'mk',
#     'malagasy': 'mg',
#     'malay': 'ms',
#     'malayalam': 'ml',
#     'maltese': 'mt',
#     'maori': 'mi',
#     'marathi': 'mr',
#     'mongolian': 'mn',
#     'myanmar (burmese)': 'my',
#     'nepali': 'ne',
#     'norwegian': 'no',
#     'odia': 'or',
#     'pashto': 'ps',
#     'persian': 'fa',
#     'polish': 'pl',
#     'portuguese': 'pt',
#     'punjabi': 'pa',
#     'romanian': 'ro',
#     'russian': 'ru',
#     'samoan': 'sm',
#     'scots gaelic': 'gd',
#     'serbian': 'sr',
#     'sesotho': 'st',
#     'shona': 'sn',
#     'sindhi': 'sd',
#     'sinhala': 'si',
#     'slovak': 'sk',
#     'slovenian': 'sl',
#     'somali': 'so',
#     'spanish': 'es',
#     'sundanese': 'su',
#     'swahili': 'sw',
#     'swedish': 'sv',
#     'tajik': 'tg',
#     'tamil': 'ta',
#     'telugu': 'te',
#     'thai': 'th',
#     'turkish': 'tr',
#     'ukrainian': 'uk',
#     'urdu': 'ur',
#     'uyghur': 'ug',
#     'uzbek': 'uz',
#     'vietnamese': 'vi',
#     'welsh': 'cy',
#     'xhosa': 'xh',
#     'yiddish': 'yi',
#     'yoruba': 'yo',
#     'zulu': 'zu',
# }


#img=Image.open('finallogo.jpg')

# col1, col2 = st.columns([1,3])

# #with col1:
#         #st.image(img, width=220)

# with col2:
#         custom_theme = {
#             "theme": {
#                 "primaryColor": "#000000",
#                 "backgroundColor": "#89939E",
#                 "secondaryBackgroundColor": "#262730",
#                 "textColor": "#FFFFFF",
#                 "font": "Serif"
#             }
#         }

#         # Apply custom theme to Streamlit
#         st.markdown(
#             f"""
#             <style>
#             :root {{
#                 --primary-color: {custom_theme["theme"]["primaryColor"]};
#                 --background-color: {custom_theme["theme"]["backgroundColor"]};
#                 --secondary-background-color: {custom_theme["theme"]["secondaryBackgroundColor"]};
#                 --text-color: {custom_theme["theme"]["textColor"]};
#                 --font: {custom_theme["theme"]["font"]};
#             }}
#             </style>
#             """,
#             unsafe_allow_html=True
#         )




# st.header("")
# hide_st_style = """
#                 <style>
#                 #Mainmenu{visibility: hidden;}
#                 footer{visibility:hidden; }
#                 </style>
#                 """

# st.markdown(hide_st_style, unsafe_allow_html=True)




# @st.cache_data  # type: ignore
# def get_ice_servers():
#     """Use Twilio's TURN server because Streamlit Community Cloud has changed
#     its infrastructure and WebRTC connection cannot be established without TURN server now.  # noqa: E501
#     We considered Open Relay Project (https://www.metered.ca/tools/openrelay/) too,
#     but it is not stable and hardly works as some people reported like https://github.com/aiortc/aiortc/issues/832#issuecomment-1482420656  # noqa: E501
#     See https://github.com/whitphx/streamlit-webrtc/issues/1213
#     """

#     # Ref: https://www.twilio.com/docs/stun-turn/api
#     try:
#         account_sid = "ACbea2776671d07a28bfa473b522b609fb"
#         auth_token = "f9d226593c16124f8eaed4b8d2d5397b"
#     except KeyError:
#         logger.warning(
#             "Twilio credentials are not set. Fallback to a free STUN server from Google."  # noqa: E501
#         )
#         return [{"urls": ["stun:stun.l.google.com:19302"]}]

#     client = Client(account_sid, auth_token)

#     token = client.tokens.create()

#     return token.ice_servers

# Function to recognize speech
# def recognize_speech(prompt, language='en'):
#     try:
#         # audio_source = mic_recorder(
#         #             start_prompt="Start recording",
#         #             stop_prompt="Stop recording", 
#         #             just_once=False,
#         #             use_container_width=False,
#         #             key='recorder')
#         with sr.Microphone() as source:
#             st.write(prompt)
#             # Use recognizer to adjust to ambient noise
#             recognizer.adjust_for_ambient_noise(source, duration=1)
#             audio = recognizer.listen(source)
#             st.write("Recognizing...")

#         # Recognize the speech in the specified language
#         spoken_text = recognizer.recognize_google(audio, language=language)
#         return spoken_text
#     except sr.UnknownValueError:
#         st.write("Sorry, I couldn't understand your speech.")

        

# Function to translate speech
def translate_speech():
    # Get source language name and convert it to code
    #source_language_name = recognize_speech("Please speak the source language name (e.g., 'English'): ")
    
        

    # st.write("Record your voice, and play the recorded audio:")
    # audio=mic_recorder(start_prompt="⏺️",stop_prompt="⏹️",key='recorder')

    # if audio:       
    #     st.audio(audio['bytes'])
    st.title("BITranSlate")
    source_language_name = st.selectbox('Please input the source language',language_dict)
    source_language = language_dict[source_language_name]
    target_language_name = st.selectbox('Please input the target language',language_dict)
    target_language = language_dict[target_language_name]
    #state=st.session_state

    # if 'text_received' not in state:
    #     state.text_received=[]

    c1,c2=st.columns(2)
    with c1:
        st.write("Convert speech to text:")
    with c2:
        text=speech_to_text(language=source_language,use_container_width=True,just_once=True,key='STT')

    # if text:       
    #     state.text_received.append(text)

    # for text in state.text_received:
    #     st.text(text)
    # Get sentence to translate
    sentence = text
    # while sentence is None:
    #     sentence = recognize_speech("Please speak the sentence to translate:", language=source_language)

    # Get destination language name and convert it to code
    # destination_language_name = recognize_speech("Please speak the destination language name (e.g., 'French'): ")
    # destination_language = language_dict.get(destination_language_name.lower(), 'en')

    # Translate the text to the desired language
    #translated_text = translator.translate(sentence, src=source_language, dest=target_language)

    nllb_langs = {'hindi':'hin_Deva',
                  'english':'eng_Latn',
                  'punjabi':'pan_Guru',
                  'odia':'ory_Orya',
                  'bengali':'ben_Beng',
                  'telugu':'tel_Tulu',
                  'tamil':'tam_Taml',
                  'nepali':'npi_Deva',
                  'marathi':'mar_Deva',
                  'malayalam':'mal_Mlym',
                  'kannada':'kan_Knda',
                  'gujarati':'guj_Gujr',
                  'afrikaans':'hin_Deva'
                  }

    translator = pipeline('translation', model=AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M"), tokenizer=AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M"), src_lang=nllb_langs[source_language_name], tgt_lang=nllb_langs[target_language_name], max_length = 4000)
    text_to_translate = text
    translated_text = translator(text_to_translate)[0]['translation_text']

    st.write(f"Source Language: {source_language_name}")
    st.write(f"Sentence: {sentence}")
    st.write(f"Destination Language: {target_language_name}")
    st.write(f"Translated Text: {translated_text}")

    # Using Google-Text-to-Speech to speak the translated text
    # speak = gTTS(text=translated_text, lang=target_language, slow=False)
    # speak.save("translated_voice.mp3")

    # # Play the translated voice
    # playsound('translated_voice.mp3')

#if st.button("  CLICK HERE TO TRANSLATE  "):
translate_speech()