File size: 25,096 Bytes
135b069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
# Copyright 2022 The Music Spectrogram Diffusion Authors.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import dataclasses
import math
import os
from typing import Any, Callable, List, Mapping, MutableMapping, Optional, Sequence, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F

from ....utils import is_note_seq_available
from .pipeline_spectrogram_diffusion import TARGET_FEATURE_LENGTH


if is_note_seq_available():
    import note_seq
else:
    raise ImportError("Please install note-seq via `pip install note-seq`")


INPUT_FEATURE_LENGTH = 2048

SAMPLE_RATE = 16000
HOP_SIZE = 320
FRAME_RATE = int(SAMPLE_RATE // HOP_SIZE)

DEFAULT_STEPS_PER_SECOND = 100
DEFAULT_MAX_SHIFT_SECONDS = 10
DEFAULT_NUM_VELOCITY_BINS = 1

SLAKH_CLASS_PROGRAMS = {
    "Acoustic Piano": 0,
    "Electric Piano": 4,
    "Chromatic Percussion": 8,
    "Organ": 16,
    "Acoustic Guitar": 24,
    "Clean Electric Guitar": 26,
    "Distorted Electric Guitar": 29,
    "Acoustic Bass": 32,
    "Electric Bass": 33,
    "Violin": 40,
    "Viola": 41,
    "Cello": 42,
    "Contrabass": 43,
    "Orchestral Harp": 46,
    "Timpani": 47,
    "String Ensemble": 48,
    "Synth Strings": 50,
    "Choir and Voice": 52,
    "Orchestral Hit": 55,
    "Trumpet": 56,
    "Trombone": 57,
    "Tuba": 58,
    "French Horn": 60,
    "Brass Section": 61,
    "Soprano/Alto Sax": 64,
    "Tenor Sax": 66,
    "Baritone Sax": 67,
    "Oboe": 68,
    "English Horn": 69,
    "Bassoon": 70,
    "Clarinet": 71,
    "Pipe": 73,
    "Synth Lead": 80,
    "Synth Pad": 88,
}


@dataclasses.dataclass
class NoteRepresentationConfig:
    """Configuration note representations."""

    onsets_only: bool
    include_ties: bool


@dataclasses.dataclass
class NoteEventData:
    pitch: int
    velocity: Optional[int] = None
    program: Optional[int] = None
    is_drum: Optional[bool] = None
    instrument: Optional[int] = None


@dataclasses.dataclass
class NoteEncodingState:
    """Encoding state for note transcription, keeping track of active pitches."""

    # velocity bin for active pitches and programs
    active_pitches: MutableMapping[Tuple[int, int], int] = dataclasses.field(default_factory=dict)


@dataclasses.dataclass
class EventRange:
    type: str
    min_value: int
    max_value: int


@dataclasses.dataclass
class Event:
    type: str
    value: int


class Tokenizer:
    def __init__(self, regular_ids: int):
        # The special tokens: 0=PAD, 1=EOS, and 2=UNK
        self._num_special_tokens = 3
        self._num_regular_tokens = regular_ids

    def encode(self, token_ids):
        encoded = []
        for token_id in token_ids:
            if not 0 <= token_id < self._num_regular_tokens:
                raise ValueError(
                    f"token_id {token_id} does not fall within valid range of [0, {self._num_regular_tokens})"
                )
            encoded.append(token_id + self._num_special_tokens)

        # Add EOS token
        encoded.append(1)

        # Pad to till INPUT_FEATURE_LENGTH
        encoded = encoded + [0] * (INPUT_FEATURE_LENGTH - len(encoded))

        return encoded


class Codec:
    """Encode and decode events.

    Useful for declaring what certain ranges of a vocabulary should be used for. This is intended to be used from
    Python before encoding or after decoding with GenericTokenVocabulary. This class is more lightweight and does not
    include things like EOS or UNK token handling.

    To ensure that 'shift' events are always the first block of the vocab and start at 0, that event type is required
    and specified separately.
    """

    def __init__(self, max_shift_steps: int, steps_per_second: float, event_ranges: List[EventRange]):
        """Define Codec.

        Args:
          max_shift_steps: Maximum number of shift steps that can be encoded.
          steps_per_second: Shift steps will be interpreted as having a duration of
              1 / steps_per_second.
          event_ranges: Other supported event types and their ranges.
        """
        self.steps_per_second = steps_per_second
        self._shift_range = EventRange(type="shift", min_value=0, max_value=max_shift_steps)
        self._event_ranges = [self._shift_range] + event_ranges
        # Ensure all event types have unique names.
        assert len(self._event_ranges) == len({er.type for er in self._event_ranges})

    @property
    def num_classes(self) -> int:
        return sum(er.max_value - er.min_value + 1 for er in self._event_ranges)

    # The next couple methods are simplified special case methods just for shift
    # events that are intended to be used from within autograph functions.

    def is_shift_event_index(self, index: int) -> bool:
        return (self._shift_range.min_value <= index) and (index <= self._shift_range.max_value)

    @property
    def max_shift_steps(self) -> int:
        return self._shift_range.max_value

    def encode_event(self, event: Event) -> int:
        """Encode an event to an index."""
        offset = 0
        for er in self._event_ranges:
            if event.type == er.type:
                if not er.min_value <= event.value <= er.max_value:
                    raise ValueError(
                        f"Event value {event.value} is not within valid range "
                        f"[{er.min_value}, {er.max_value}] for type {event.type}"
                    )
                return offset + event.value - er.min_value
            offset += er.max_value - er.min_value + 1

        raise ValueError(f"Unknown event type: {event.type}")

    def event_type_range(self, event_type: str) -> Tuple[int, int]:
        """Return [min_id, max_id] for an event type."""
        offset = 0
        for er in self._event_ranges:
            if event_type == er.type:
                return offset, offset + (er.max_value - er.min_value)
            offset += er.max_value - er.min_value + 1

        raise ValueError(f"Unknown event type: {event_type}")

    def decode_event_index(self, index: int) -> Event:
        """Decode an event index to an Event."""
        offset = 0
        for er in self._event_ranges:
            if offset <= index <= offset + er.max_value - er.min_value:
                return Event(type=er.type, value=er.min_value + index - offset)
            offset += er.max_value - er.min_value + 1

        raise ValueError(f"Unknown event index: {index}")


@dataclasses.dataclass
class ProgramGranularity:
    # both tokens_map_fn and program_map_fn should be idempotent
    tokens_map_fn: Callable[[Sequence[int], Codec], Sequence[int]]
    program_map_fn: Callable[[int], int]


def drop_programs(tokens, codec: Codec):
    """Drops program change events from a token sequence."""
    min_program_id, max_program_id = codec.event_type_range("program")
    return tokens[(tokens < min_program_id) | (tokens > max_program_id)]


def programs_to_midi_classes(tokens, codec):
    """Modifies program events to be the first program in the MIDI class."""
    min_program_id, max_program_id = codec.event_type_range("program")
    is_program = (tokens >= min_program_id) & (tokens <= max_program_id)
    return np.where(is_program, min_program_id + 8 * ((tokens - min_program_id) // 8), tokens)


PROGRAM_GRANULARITIES = {
    # "flat" granularity; drop program change tokens and set NoteSequence
    # programs to zero
    "flat": ProgramGranularity(tokens_map_fn=drop_programs, program_map_fn=lambda program: 0),
    # map each program to the first program in its MIDI class
    "midi_class": ProgramGranularity(
        tokens_map_fn=programs_to_midi_classes, program_map_fn=lambda program: 8 * (program // 8)
    ),
    # leave programs as is
    "full": ProgramGranularity(tokens_map_fn=lambda tokens, codec: tokens, program_map_fn=lambda program: program),
}


def frame(signal, frame_length, frame_step, pad_end=False, pad_value=0, axis=-1):
    """
    equivalent of tf.signal.frame
    """
    signal_length = signal.shape[axis]
    if pad_end:
        frames_overlap = frame_length - frame_step
        rest_samples = np.abs(signal_length - frames_overlap) % np.abs(frame_length - frames_overlap)
        pad_size = int(frame_length - rest_samples)

        if pad_size != 0:
            pad_axis = [0] * signal.ndim
            pad_axis[axis] = pad_size
            signal = F.pad(signal, pad_axis, "constant", pad_value)
    frames = signal.unfold(axis, frame_length, frame_step)
    return frames


def program_to_slakh_program(program):
    # this is done very hackily, probably should use a custom mapping
    for slakh_program in sorted(SLAKH_CLASS_PROGRAMS.values(), reverse=True):
        if program >= slakh_program:
            return slakh_program


def audio_to_frames(
    samples,
    hop_size: int,
    frame_rate: int,
) -> Tuple[Sequence[Sequence[int]], torch.Tensor]:
    """Convert audio samples to non-overlapping frames and frame times."""
    frame_size = hop_size
    samples = np.pad(samples, [0, frame_size - len(samples) % frame_size], mode="constant")

    # Split audio into frames.
    frames = frame(
        torch.Tensor(samples).unsqueeze(0),
        frame_length=frame_size,
        frame_step=frame_size,
        pad_end=False,  # TODO check why its off by 1 here when True
    )

    num_frames = len(samples) // frame_size

    times = np.arange(num_frames) / frame_rate
    return frames, times


def note_sequence_to_onsets_and_offsets_and_programs(
    ns: note_seq.NoteSequence,
) -> Tuple[Sequence[float], Sequence[NoteEventData]]:
    """Extract onset & offset times and pitches & programs from a NoteSequence.

    The onset & offset times will not necessarily be in sorted order.

    Args:
      ns: NoteSequence from which to extract onsets and offsets.

    Returns:
      times: A list of note onset and offset times. values: A list of NoteEventData objects where velocity is zero for
      note
          offsets.
    """
    # Sort by program and pitch and put offsets before onsets as a tiebreaker for
    # subsequent stable sort.
    notes = sorted(ns.notes, key=lambda note: (note.is_drum, note.program, note.pitch))
    times = [note.end_time for note in notes if not note.is_drum] + [note.start_time for note in notes]
    values = [
        NoteEventData(pitch=note.pitch, velocity=0, program=note.program, is_drum=False)
        for note in notes
        if not note.is_drum
    ] + [
        NoteEventData(pitch=note.pitch, velocity=note.velocity, program=note.program, is_drum=note.is_drum)
        for note in notes
    ]
    return times, values


def num_velocity_bins_from_codec(codec: Codec):
    """Get number of velocity bins from event codec."""
    lo, hi = codec.event_type_range("velocity")
    return hi - lo


# segment an array into segments of length n
def segment(a, n):
    return [a[i : i + n] for i in range(0, len(a), n)]


def velocity_to_bin(velocity, num_velocity_bins):
    if velocity == 0:
        return 0
    else:
        return math.ceil(num_velocity_bins * velocity / note_seq.MAX_MIDI_VELOCITY)


def note_event_data_to_events(
    state: Optional[NoteEncodingState],
    value: NoteEventData,
    codec: Codec,
) -> Sequence[Event]:
    """Convert note event data to a sequence of events."""
    if value.velocity is None:
        # onsets only, no program or velocity
        return [Event("pitch", value.pitch)]
    else:
        num_velocity_bins = num_velocity_bins_from_codec(codec)
        velocity_bin = velocity_to_bin(value.velocity, num_velocity_bins)
        if value.program is None:
            # onsets + offsets + velocities only, no programs
            if state is not None:
                state.active_pitches[(value.pitch, 0)] = velocity_bin
            return [Event("velocity", velocity_bin), Event("pitch", value.pitch)]
        else:
            if value.is_drum:
                # drum events use a separate vocabulary
                return [Event("velocity", velocity_bin), Event("drum", value.pitch)]
            else:
                # program + velocity + pitch
                if state is not None:
                    state.active_pitches[(value.pitch, value.program)] = velocity_bin
                return [
                    Event("program", value.program),
                    Event("velocity", velocity_bin),
                    Event("pitch", value.pitch),
                ]


def note_encoding_state_to_events(state: NoteEncodingState) -> Sequence[Event]:
    """Output program and pitch events for active notes plus a final tie event."""
    events = []
    for pitch, program in sorted(state.active_pitches.keys(), key=lambda k: k[::-1]):
        if state.active_pitches[(pitch, program)]:
            events += [Event("program", program), Event("pitch", pitch)]
    events.append(Event("tie", 0))
    return events


def encode_and_index_events(
    state, event_times, event_values, codec, frame_times, encode_event_fn, encoding_state_to_events_fn=None
):
    """Encode a sequence of timed events and index to audio frame times.

    Encodes time shifts as repeated single step shifts for later run length encoding.

    Optionally, also encodes a sequence of "state events", keeping track of the current encoding state at each audio
    frame. This can be used e.g. to prepend events representing the current state to a targets segment.

    Args:
      state: Initial event encoding state.
      event_times: Sequence of event times.
      event_values: Sequence of event values.
      encode_event_fn: Function that transforms event value into a sequence of one
          or more Event objects.
      codec: An Codec object that maps Event objects to indices.
      frame_times: Time for every audio frame.
      encoding_state_to_events_fn: Function that transforms encoding state into a
          sequence of one or more Event objects.

    Returns:
      events: Encoded events and shifts. event_start_indices: Corresponding start event index for every audio frame.
          Note: one event can correspond to multiple audio indices due to sampling rate differences. This makes
          splitting sequences tricky because the same event can appear at the end of one sequence and the beginning of
          another.
      event_end_indices: Corresponding end event index for every audio frame. Used
          to ensure when slicing that one chunk ends where the next begins. Should always be true that
          event_end_indices[i] = event_start_indices[i + 1].
      state_events: Encoded "state" events representing the encoding state before
          each event.
      state_event_indices: Corresponding state event index for every audio frame.
    """
    indices = np.argsort(event_times, kind="stable")
    event_steps = [round(event_times[i] * codec.steps_per_second) for i in indices]
    event_values = [event_values[i] for i in indices]

    events = []
    state_events = []
    event_start_indices = []
    state_event_indices = []

    cur_step = 0
    cur_event_idx = 0
    cur_state_event_idx = 0

    def fill_event_start_indices_to_cur_step():
        while (
            len(event_start_indices) < len(frame_times)
            and frame_times[len(event_start_indices)] < cur_step / codec.steps_per_second
        ):
            event_start_indices.append(cur_event_idx)
            state_event_indices.append(cur_state_event_idx)

    for event_step, event_value in zip(event_steps, event_values):
        while event_step > cur_step:
            events.append(codec.encode_event(Event(type="shift", value=1)))
            cur_step += 1
            fill_event_start_indices_to_cur_step()
            cur_event_idx = len(events)
            cur_state_event_idx = len(state_events)
        if encoding_state_to_events_fn:
            # Dump state to state events *before* processing the next event, because
            # we want to capture the state prior to the occurrence of the event.
            for e in encoding_state_to_events_fn(state):
                state_events.append(codec.encode_event(e))

        for e in encode_event_fn(state, event_value, codec):
            events.append(codec.encode_event(e))

    # After the last event, continue filling out the event_start_indices array.
    # The inequality is not strict because if our current step lines up exactly
    # with (the start of) an audio frame, we need to add an additional shift event
    # to "cover" that frame.
    while cur_step / codec.steps_per_second <= frame_times[-1]:
        events.append(codec.encode_event(Event(type="shift", value=1)))
        cur_step += 1
        fill_event_start_indices_to_cur_step()
        cur_event_idx = len(events)

    # Now fill in event_end_indices. We need this extra array to make sure that
    # when we slice events, each slice ends exactly where the subsequent slice
    # begins.
    event_end_indices = event_start_indices[1:] + [len(events)]

    events = np.array(events).astype(np.int32)
    state_events = np.array(state_events).astype(np.int32)
    event_start_indices = segment(np.array(event_start_indices).astype(np.int32), TARGET_FEATURE_LENGTH)
    event_end_indices = segment(np.array(event_end_indices).astype(np.int32), TARGET_FEATURE_LENGTH)
    state_event_indices = segment(np.array(state_event_indices).astype(np.int32), TARGET_FEATURE_LENGTH)

    outputs = []
    for start_indices, end_indices, event_indices in zip(event_start_indices, event_end_indices, state_event_indices):
        outputs.append(
            {
                "inputs": events,
                "event_start_indices": start_indices,
                "event_end_indices": end_indices,
                "state_events": state_events,
                "state_event_indices": event_indices,
            }
        )

    return outputs


def extract_sequence_with_indices(features, state_events_end_token=None, feature_key="inputs"):
    """Extract target sequence corresponding to audio token segment."""
    features = features.copy()
    start_idx = features["event_start_indices"][0]
    end_idx = features["event_end_indices"][-1]

    features[feature_key] = features[feature_key][start_idx:end_idx]

    if state_events_end_token is not None:
        # Extract the state events corresponding to the audio start token, and
        # prepend them to the targets array.
        state_event_start_idx = features["state_event_indices"][0]
        state_event_end_idx = state_event_start_idx + 1
        while features["state_events"][state_event_end_idx - 1] != state_events_end_token:
            state_event_end_idx += 1
        features[feature_key] = np.concatenate(
            [
                features["state_events"][state_event_start_idx:state_event_end_idx],
                features[feature_key],
            ],
            axis=0,
        )

    return features


def map_midi_programs(
    feature, codec: Codec, granularity_type: str = "full", feature_key: str = "inputs"
) -> Mapping[str, Any]:
    """Apply MIDI program map to token sequences."""
    granularity = PROGRAM_GRANULARITIES[granularity_type]

    feature[feature_key] = granularity.tokens_map_fn(feature[feature_key], codec)
    return feature


def run_length_encode_shifts_fn(
    features,
    codec: Codec,
    feature_key: str = "inputs",
    state_change_event_types: Sequence[str] = (),
) -> Callable[[Mapping[str, Any]], Mapping[str, Any]]:
    """Return a function that run-length encodes shifts for a given codec.

    Args:
      codec: The Codec to use for shift events.
      feature_key: The feature key for which to run-length encode shifts.
      state_change_event_types: A list of event types that represent state
          changes; tokens corresponding to these event types will be interpreted as state changes and redundant ones
          will be removed.

    Returns:
      A preprocessing function that run-length encodes single-step shifts.
    """
    state_change_event_ranges = [codec.event_type_range(event_type) for event_type in state_change_event_types]

    def run_length_encode_shifts(features: MutableMapping[str, Any]) -> Mapping[str, Any]:
        """Combine leading/interior shifts, trim trailing shifts.

        Args:
          features: Dict of features to process.

        Returns:
          A dict of features.
        """
        events = features[feature_key]

        shift_steps = 0
        total_shift_steps = 0
        output = np.array([], dtype=np.int32)

        current_state = np.zeros(len(state_change_event_ranges), dtype=np.int32)

        for event in events:
            if codec.is_shift_event_index(event):
                shift_steps += 1
                total_shift_steps += 1

            else:
                # If this event is a state change and has the same value as the current
                # state, we can skip it entirely.
                is_redundant = False
                for i, (min_index, max_index) in enumerate(state_change_event_ranges):
                    if (min_index <= event) and (event <= max_index):
                        if current_state[i] == event:
                            is_redundant = True
                        current_state[i] = event
                if is_redundant:
                    continue

                # Once we've reached a non-shift event, RLE all previous shift events
                # before outputting the non-shift event.
                if shift_steps > 0:
                    shift_steps = total_shift_steps
                    while shift_steps > 0:
                        output_steps = np.minimum(codec.max_shift_steps, shift_steps)
                        output = np.concatenate([output, [output_steps]], axis=0)
                        shift_steps -= output_steps
                output = np.concatenate([output, [event]], axis=0)

        features[feature_key] = output
        return features

    return run_length_encode_shifts(features)


def note_representation_processor_chain(features, codec: Codec, note_representation_config: NoteRepresentationConfig):
    tie_token = codec.encode_event(Event("tie", 0))
    state_events_end_token = tie_token if note_representation_config.include_ties else None

    features = extract_sequence_with_indices(
        features, state_events_end_token=state_events_end_token, feature_key="inputs"
    )

    features = map_midi_programs(features, codec)

    features = run_length_encode_shifts_fn(features, codec, state_change_event_types=["velocity", "program"])

    return features


class MidiProcessor:
    def __init__(self):
        self.codec = Codec(
            max_shift_steps=DEFAULT_MAX_SHIFT_SECONDS * DEFAULT_STEPS_PER_SECOND,
            steps_per_second=DEFAULT_STEPS_PER_SECOND,
            event_ranges=[
                EventRange("pitch", note_seq.MIN_MIDI_PITCH, note_seq.MAX_MIDI_PITCH),
                EventRange("velocity", 0, DEFAULT_NUM_VELOCITY_BINS),
                EventRange("tie", 0, 0),
                EventRange("program", note_seq.MIN_MIDI_PROGRAM, note_seq.MAX_MIDI_PROGRAM),
                EventRange("drum", note_seq.MIN_MIDI_PITCH, note_seq.MAX_MIDI_PITCH),
            ],
        )
        self.tokenizer = Tokenizer(self.codec.num_classes)
        self.note_representation_config = NoteRepresentationConfig(onsets_only=False, include_ties=True)

    def __call__(self, midi: Union[bytes, os.PathLike, str]):
        if not isinstance(midi, bytes):
            with open(midi, "rb") as f:
                midi = f.read()

        ns = note_seq.midi_to_note_sequence(midi)
        ns_sus = note_seq.apply_sustain_control_changes(ns)

        for note in ns_sus.notes:
            if not note.is_drum:
                note.program = program_to_slakh_program(note.program)

        samples = np.zeros(int(ns_sus.total_time * SAMPLE_RATE))

        _, frame_times = audio_to_frames(samples, HOP_SIZE, FRAME_RATE)
        times, values = note_sequence_to_onsets_and_offsets_and_programs(ns_sus)

        events = encode_and_index_events(
            state=NoteEncodingState(),
            event_times=times,
            event_values=values,
            frame_times=frame_times,
            codec=self.codec,
            encode_event_fn=note_event_data_to_events,
            encoding_state_to_events_fn=note_encoding_state_to_events,
        )

        events = [
            note_representation_processor_chain(event, self.codec, self.note_representation_config) for event in events
        ]
        input_tokens = [self.tokenizer.encode(event["inputs"]) for event in events]

        return input_tokens