File size: 22,660 Bytes
135b069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings
from functools import partial
from typing import Dict, List, Optional, Union

import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict
from flax.jax_utils import unreplicate
from flax.training.common_utils import shard
from PIL import Image
from transformers import CLIPFeatureExtractor, CLIPTokenizer, FlaxCLIPTextModel

from ...models import FlaxAutoencoderKL, FlaxControlNetModel, FlaxUNet2DConditionModel
from ...schedulers import (
    FlaxDDIMScheduler,
    FlaxDPMSolverMultistepScheduler,
    FlaxLMSDiscreteScheduler,
    FlaxPNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, logging, replace_example_docstring
from ..pipeline_flax_utils import FlaxDiffusionPipeline
from ..stable_diffusion import FlaxStableDiffusionPipelineOutput
from ..stable_diffusion.safety_checker_flax import FlaxStableDiffusionSafetyChecker


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

# Set to True to use python for loop instead of jax.fori_loop for easier debugging
DEBUG = False

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import jax
        >>> import numpy as np
        >>> import jax.numpy as jnp
        >>> from flax.jax_utils import replicate
        >>> from flax.training.common_utils import shard
        >>> from diffusers.utils import load_image, make_image_grid
        >>> from PIL import Image
        >>> from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel


        >>> def create_key(seed=0):
        ...     return jax.random.PRNGKey(seed)


        >>> rng = create_key(0)

        >>> # get canny image
        >>> canny_image = load_image(
        ...     "https://huggingface.co/datasets/YiYiXu/test-doc-assets/resolve/main/blog_post_cell_10_output_0.jpeg"
        ... )

        >>> prompts = "best quality, extremely detailed"
        >>> negative_prompts = "monochrome, lowres, bad anatomy, worst quality, low quality"

        >>> # load control net and stable diffusion v1-5
        >>> controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
        ...     "lllyasviel/sd-controlnet-canny", from_pt=True, dtype=jnp.float32
        ... )
        >>> pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
        ...     "runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.float32
        ... )
        >>> params["controlnet"] = controlnet_params

        >>> num_samples = jax.device_count()
        >>> rng = jax.random.split(rng, jax.device_count())

        >>> prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
        >>> negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples)
        >>> processed_image = pipe.prepare_image_inputs([canny_image] * num_samples)

        >>> p_params = replicate(params)
        >>> prompt_ids = shard(prompt_ids)
        >>> negative_prompt_ids = shard(negative_prompt_ids)
        >>> processed_image = shard(processed_image)

        >>> output = pipe(
        ...     prompt_ids=prompt_ids,
        ...     image=processed_image,
        ...     params=p_params,
        ...     prng_seed=rng,
        ...     num_inference_steps=50,
        ...     neg_prompt_ids=negative_prompt_ids,
        ...     jit=True,
        ... ).images

        >>> output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))
        >>> output_images = make_image_grid(output_images, num_samples // 4, 4)
        >>> output_images.save("generated_image.png")
        ```
"""


class FlaxStableDiffusionControlNetPipeline(FlaxDiffusionPipeline):
    r"""
    Flax-based pipeline for text-to-image generation using Stable Diffusion with ControlNet Guidance.

    This model inherits from [`FlaxDiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    Args:
        vae ([`FlaxAutoencoderKL`]):
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.FlaxCLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        unet ([`FlaxUNet2DConditionModel`]):
            A `FlaxUNet2DConditionModel` to denoise the encoded image latents.
        controlnet ([`FlaxControlNetModel`]:
            Provides additional conditioning to the `unet` during the denoising process.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`FlaxDDIMScheduler`], [`FlaxLMSDiscreteScheduler`], [`FlaxPNDMScheduler`], or
            [`FlaxDPMSolverMultistepScheduler`].
        safety_checker ([`FlaxStableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
            about a model's potential harms.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
    """

    def __init__(
        self,
        vae: FlaxAutoencoderKL,
        text_encoder: FlaxCLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: FlaxUNet2DConditionModel,
        controlnet: FlaxControlNetModel,
        scheduler: Union[
            FlaxDDIMScheduler, FlaxPNDMScheduler, FlaxLMSDiscreteScheduler, FlaxDPMSolverMultistepScheduler
        ],
        safety_checker: FlaxStableDiffusionSafetyChecker,
        feature_extractor: CLIPFeatureExtractor,
        dtype: jnp.dtype = jnp.float32,
    ):
        super().__init__()
        self.dtype = dtype

        if safety_checker is None:
            logger.warn(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            controlnet=controlnet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)

    def prepare_text_inputs(self, prompt: Union[str, List[str]]):
        if not isinstance(prompt, (str, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        text_input = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="np",
        )

        return text_input.input_ids

    def prepare_image_inputs(self, image: Union[Image.Image, List[Image.Image]]):
        if not isinstance(image, (Image.Image, list)):
            raise ValueError(f"image has to be of type `PIL.Image.Image` or list but is {type(image)}")

        if isinstance(image, Image.Image):
            image = [image]

        processed_images = jnp.concatenate([preprocess(img, jnp.float32) for img in image])

        return processed_images

    def _get_has_nsfw_concepts(self, features, params):
        has_nsfw_concepts = self.safety_checker(features, params)
        return has_nsfw_concepts

    def _run_safety_checker(self, images, safety_model_params, jit=False):
        # safety_model_params should already be replicated when jit is True
        pil_images = [Image.fromarray(image) for image in images]
        features = self.feature_extractor(pil_images, return_tensors="np").pixel_values

        if jit:
            features = shard(features)
            has_nsfw_concepts = _p_get_has_nsfw_concepts(self, features, safety_model_params)
            has_nsfw_concepts = unshard(has_nsfw_concepts)
            safety_model_params = unreplicate(safety_model_params)
        else:
            has_nsfw_concepts = self._get_has_nsfw_concepts(features, safety_model_params)

        images_was_copied = False
        for idx, has_nsfw_concept in enumerate(has_nsfw_concepts):
            if has_nsfw_concept:
                if not images_was_copied:
                    images_was_copied = True
                    images = images.copy()

                images[idx] = np.zeros(images[idx].shape, dtype=np.uint8)  # black image

            if any(has_nsfw_concepts):
                warnings.warn(
                    "Potential NSFW content was detected in one or more images. A black image will be returned"
                    " instead. Try again with a different prompt and/or seed."
                )

        return images, has_nsfw_concepts

    def _generate(
        self,
        prompt_ids: jnp.ndarray,
        image: jnp.ndarray,
        params: Union[Dict, FrozenDict],
        prng_seed: jax.Array,
        num_inference_steps: int,
        guidance_scale: float,
        latents: Optional[jnp.ndarray] = None,
        neg_prompt_ids: Optional[jnp.ndarray] = None,
        controlnet_conditioning_scale: float = 1.0,
    ):
        height, width = image.shape[-2:]
        if height % 64 != 0 or width % 64 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 64 but are {height} and {width}.")

        # get prompt text embeddings
        prompt_embeds = self.text_encoder(prompt_ids, params=params["text_encoder"])[0]

        # TODO: currently it is assumed `do_classifier_free_guidance = guidance_scale > 1.0`
        # implement this conditional `do_classifier_free_guidance = guidance_scale > 1.0`
        batch_size = prompt_ids.shape[0]

        max_length = prompt_ids.shape[-1]

        if neg_prompt_ids is None:
            uncond_input = self.tokenizer(
                [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="np"
            ).input_ids
        else:
            uncond_input = neg_prompt_ids
        negative_prompt_embeds = self.text_encoder(uncond_input, params=params["text_encoder"])[0]
        context = jnp.concatenate([negative_prompt_embeds, prompt_embeds])

        image = jnp.concatenate([image] * 2)

        latents_shape = (
            batch_size,
            self.unet.config.in_channels,
            height // self.vae_scale_factor,
            width // self.vae_scale_factor,
        )
        if latents is None:
            latents = jax.random.normal(prng_seed, shape=latents_shape, dtype=jnp.float32)
        else:
            if latents.shape != latents_shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")

        def loop_body(step, args):
            latents, scheduler_state = args
            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            latents_input = jnp.concatenate([latents] * 2)

            t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step]
            timestep = jnp.broadcast_to(t, latents_input.shape[0])

            latents_input = self.scheduler.scale_model_input(scheduler_state, latents_input, t)

            down_block_res_samples, mid_block_res_sample = self.controlnet.apply(
                {"params": params["controlnet"]},
                jnp.array(latents_input),
                jnp.array(timestep, dtype=jnp.int32),
                encoder_hidden_states=context,
                controlnet_cond=image,
                conditioning_scale=controlnet_conditioning_scale,
                return_dict=False,
            )

            # predict the noise residual
            noise_pred = self.unet.apply(
                {"params": params["unet"]},
                jnp.array(latents_input),
                jnp.array(timestep, dtype=jnp.int32),
                encoder_hidden_states=context,
                down_block_additional_residuals=down_block_res_samples,
                mid_block_additional_residual=mid_block_res_sample,
            ).sample

            # perform guidance
            noise_pred_uncond, noise_prediction_text = jnp.split(noise_pred, 2, axis=0)
            noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            latents, scheduler_state = self.scheduler.step(scheduler_state, noise_pred, t, latents).to_tuple()
            return latents, scheduler_state

        scheduler_state = self.scheduler.set_timesteps(
            params["scheduler"], num_inference_steps=num_inference_steps, shape=latents_shape
        )

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * params["scheduler"].init_noise_sigma

        if DEBUG:
            # run with python for loop
            for i in range(num_inference_steps):
                latents, scheduler_state = loop_body(i, (latents, scheduler_state))
        else:
            latents, _ = jax.lax.fori_loop(0, num_inference_steps, loop_body, (latents, scheduler_state))

        # scale and decode the image latents with vae
        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.apply({"params": params["vae"]}, latents, method=self.vae.decode).sample

        image = (image / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1)
        return image

    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt_ids: jnp.ndarray,
        image: jnp.ndarray,
        params: Union[Dict, FrozenDict],
        prng_seed: jax.Array,
        num_inference_steps: int = 50,
        guidance_scale: Union[float, jnp.ndarray] = 7.5,
        latents: jnp.ndarray = None,
        neg_prompt_ids: jnp.ndarray = None,
        controlnet_conditioning_scale: Union[float, jnp.ndarray] = 1.0,
        return_dict: bool = True,
        jit: bool = False,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt_ids (`jnp.ndarray`):
                The prompt or prompts to guide the image generation.
            image (`jnp.ndarray`):
                Array representing the ControlNet input condition to provide guidance to the `unet` for generation.
            params (`Dict` or `FrozenDict`):
                Dictionary containing the model parameters/weights.
            prng_seed (`jax.Array`):
                Array containing random number generator key.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            latents (`jnp.ndarray`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                array is generated by sampling using the supplied random `generator`.
            controlnet_conditioning_scale (`float` or `jnp.ndarray`, *optional*, defaults to 1.0):
                The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
                to the residual in the original `unet`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] instead of
                a plain tuple.
            jit (`bool`, defaults to `False`):
                Whether to run `pmap` versions of the generation and safety scoring functions.

                    <Tip warning={true}>

                    This argument exists because `__call__` is not yet end-to-end pmap-able. It will be removed in a
                    future release.

                    </Tip>

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] is
                returned, otherwise a `tuple` is returned where the first element is a list with the generated images
                and the second element is a list of `bool`s indicating whether the corresponding generated image
                contains "not-safe-for-work" (nsfw) content.
        """

        height, width = image.shape[-2:]

        if isinstance(guidance_scale, float):
            # Convert to a tensor so each device gets a copy. Follow the prompt_ids for
            # shape information, as they may be sharded (when `jit` is `True`), or not.
            guidance_scale = jnp.array([guidance_scale] * prompt_ids.shape[0])
            if len(prompt_ids.shape) > 2:
                # Assume sharded
                guidance_scale = guidance_scale[:, None]

        if isinstance(controlnet_conditioning_scale, float):
            # Convert to a tensor so each device gets a copy. Follow the prompt_ids for
            # shape information, as they may be sharded (when `jit` is `True`), or not.
            controlnet_conditioning_scale = jnp.array([controlnet_conditioning_scale] * prompt_ids.shape[0])
            if len(prompt_ids.shape) > 2:
                # Assume sharded
                controlnet_conditioning_scale = controlnet_conditioning_scale[:, None]

        if jit:
            images = _p_generate(
                self,
                prompt_ids,
                image,
                params,
                prng_seed,
                num_inference_steps,
                guidance_scale,
                latents,
                neg_prompt_ids,
                controlnet_conditioning_scale,
            )
        else:
            images = self._generate(
                prompt_ids,
                image,
                params,
                prng_seed,
                num_inference_steps,
                guidance_scale,
                latents,
                neg_prompt_ids,
                controlnet_conditioning_scale,
            )

        if self.safety_checker is not None:
            safety_params = params["safety_checker"]
            images_uint8_casted = (images * 255).round().astype("uint8")
            num_devices, batch_size = images.shape[:2]

            images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3)
            images_uint8_casted, has_nsfw_concept = self._run_safety_checker(images_uint8_casted, safety_params, jit)
            images = np.array(images)

            # block images
            if any(has_nsfw_concept):
                for i, is_nsfw in enumerate(has_nsfw_concept):
                    if is_nsfw:
                        images[i] = np.asarray(images_uint8_casted[i])

            images = images.reshape(num_devices, batch_size, height, width, 3)
        else:
            images = np.asarray(images)
            has_nsfw_concept = False

        if not return_dict:
            return (images, has_nsfw_concept)

        return FlaxStableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept)


# Static argnums are pipe, num_inference_steps. A change would trigger recompilation.
# Non-static args are (sharded) input tensors mapped over their first dimension (hence, `0`).
@partial(
    jax.pmap,
    in_axes=(None, 0, 0, 0, 0, None, 0, 0, 0, 0),
    static_broadcasted_argnums=(0, 5),
)
def _p_generate(
    pipe,
    prompt_ids,
    image,
    params,
    prng_seed,
    num_inference_steps,
    guidance_scale,
    latents,
    neg_prompt_ids,
    controlnet_conditioning_scale,
):
    return pipe._generate(
        prompt_ids,
        image,
        params,
        prng_seed,
        num_inference_steps,
        guidance_scale,
        latents,
        neg_prompt_ids,
        controlnet_conditioning_scale,
    )


@partial(jax.pmap, static_broadcasted_argnums=(0,))
def _p_get_has_nsfw_concepts(pipe, features, params):
    return pipe._get_has_nsfw_concepts(features, params)


def unshard(x: jnp.ndarray):
    # einops.rearrange(x, 'd b ... -> (d b) ...')
    num_devices, batch_size = x.shape[:2]
    rest = x.shape[2:]
    return x.reshape(num_devices * batch_size, *rest)


def preprocess(image, dtype):
    image = image.convert("RGB")
    w, h = image.size
    w, h = (x - x % 64 for x in (w, h))  # resize to integer multiple of 64
    image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
    image = jnp.array(image).astype(dtype) / 255.0
    image = image[None].transpose(0, 3, 1, 2)
    return image