File size: 7,512 Bytes
ccf1001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import torch
import torch.nn as nn
import segmentation_models_pytorch as smp
from torchmetrics import F1Score, Precision, Recall, JaccardIndex
import pytorch_lightning as pl
import wandb
from torch.optim import Adam
from torch.optim.lr_scheduler import StepLR

class smp_model(nn.Module):
    def __init__(self, in_channels, out_channels, model_type, num_classes, encoder_weights):
        super(smp_model, self).__init__()
        self.model = smp.Unet(
            encoder_name="densenet121",  # This will be "densenet121"
            encoder_weights=None,  # Load weights manually
            in_channels=in_channels,
            classes=num_classes,
        )

    def load_pretrained_weights(self):
        state_dict = torch.load('/home/hks/MOU/DenseNet121_14C_L4S/densenet121-fbdb23505-trainWeights.pth', map_location='cpu')
        conv1_weight = state_dict['features.conv0.weight']
        new_conv1_weight = torch.zeros((conv1_weight.shape[0], 14, *conv1_weight.shape[2:]))
        new_conv1_weight[:, :3, :, :] = conv1_weight  # Copy weights for the first 3 channels
        state_dict['features.conv0.weight'] = new_conv1_weight
        model_dict = self.model.encoder.state_dict()
        model_dict.update(state_dict)
        self.model.encoder.load_state_dict(model_dict)

    def forward(self, x):
        x = self.model(x)
        return x

class LandslideModel(pl.LightningModule):
    def __init__(self, config, alpha=0.5):
        super(LandslideModel, self).__init__()

        model_type = config['model_config']['model_type']
        in_channels = config['model_config']['in_channels']
        num_classes = config['model_config']['num_classes']
        self.alpha = alpha
        self.lr = config['train_config']['lr']

        if model_type == 'unet':
            self.model = UNet(in_channels=in_channels, out_channels=num_classes)
        else:
            encoder_weights = config['model_config']['encoder_weights']
            self.model = smp_model(in_channels=in_channels, 
                                   out_channels=num_classes, 
                                   model_type=model_type, 
                                   num_classes=num_classes, 
                                   encoder_weights=encoder_weights)
            self.model.load_pretrained_weights()

        self.weights = torch.tensor([5], dtype=torch.float32).to(self.device)
        self.wce = nn.BCELoss(weight=self.weights)

        self.train_f1 = F1Score(task='binary')
        self.val_f1 = F1Score(task='binary')

        self.train_precision = Precision(task='binary')
        self.val_precision = Precision(task='binary')

        self.train_recall = Recall(task='binary')
        self.val_recall = Recall(task='binary')

        self.train_iou = JaccardIndex(task='binary')
        self.val_iou = JaccardIndex(task='binary')

    def forward(self, x):
        return self.model(x)

    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = torch.sigmoid(self(x))

        wce_loss = self.wce(y_hat, y)
        dice = dice_loss(y_hat, y)

        combined_loss = (1 - self.alpha) * wce_loss + self.alpha * dice

        precision = self.train_precision(y_hat, y)
        recall = self.train_recall(y_hat, y)
        iou = self.train_iou(y_hat, y)
        loss_f1 = self.train_f1(y_hat, y)

        self.log('train_precision', precision)
        self.log('train_recall', recall)
        self.log('train_wce', wce_loss)
        self.log('train_dice', dice)
        self.log('train_iou', iou)
        self.log('train_f1', loss_f1)
        self.log('train_loss', combined_loss)
        return {'loss': combined_loss}

    def validation_step(self, batch, batch_idx):
        x, y = batch
        y_hat = torch.sigmoid(self(x))

        wce_loss = self.wce(y_hat, y)
        dice = dice_loss(y_hat, y)

        combined_loss = (1 - self.alpha) * wce_loss + self.alpha * dice

        precision = self.val_precision(y_hat, y)
        recall = self.val_recall(y_hat, y)
        iou = self.val_iou(y_hat, y)
        loss_f1 = self.val_f1(y_hat, y)

        self.log('val_precision', precision)
        self.log('val_recall', recall)
        self.log('val_wce', wce_loss)
        self.log('val_dice', dice)
        self.log('val_iou', iou)
        self.log('val_f1', loss_f1)
        self.log('val_loss', combined_loss)

        if self.current_epoch % 10 == 0:
            x = (x - x.min()) / (x.max() - x.min())
            x = x[:, 0:3]
            x = x.permute(0, 2, 3, 1)
            y_hat = (y_hat > 0.5).float()

            class_labels = {0: "no landslide", 1: "landslide"}

            self.logger.experiment.log({
                "image": wandb.Image(x[0].cpu().detach().numpy(), masks={ 
                    "predictions": {
                        "mask_data": y_hat[0][0].cpu().detach().numpy(),
                        "class_labels": class_labels
                    },
                    "ground_truth": {
                        "mask_data": y[0][0].cpu().detach().numpy(),
                        "class_labels": class_labels
                    }
                })
            })
        return {'val_loss': combined_loss}

    def configure_optimizers(self):
        optimizer = Adam(self.parameters(), lr=self.lr)
        scheduler = StepLR(optimizer, step_size=30, gamma=0.1)
        return [optimizer], [scheduler]

class Block(nn.Module):
    def __init__(self, inputs=3, middles=64, outs=64):
        super().__init__()

        self.conv1 = nn.Conv2d(inputs, middles, 3, 1, 1)
        self.conv2 = nn.Conv2d(middles, outs, 3, 1, 1)
        self.relu = nn.ReLU()
        self.bn = nn.BatchNorm2d(outs)
        self.pool = nn.MaxPool2d(2, 2)

    def forward(self, x):
        x = self.relu(self.conv1(x))
        x = self.relu(self.bn(self.conv2(x)))
        return self.pool(x), x

class UNet(nn.Module):
    def __init__(self, in_channels=3, out_channels=1):
        super().__init__()

        self.en1 = Block(in_channels, 64, 64)
        self.en2 = Block(64, 128, 128)
        self.en3 = Block(128, 256, 256)
        self.en4 = Block(256, 512, 512)
        self.en5 = Block(512, 1024, 512)

        self.upsample4 = nn.ConvTranspose2d(512, 512, 2, stride=2)
        self.de4 = Block(1024, 512, 256)

        self.upsample3 = nn.ConvTranspose2d(256, 256, 2, stride=2)
        self.de3 = Block(512, 256, 128)

        self.upsample2 = nn.ConvTranspose2d(128, 128, 2, stride=2)
        self.de2 = Block(256, 128, 64)

        self.upsample1 = nn.ConvTranspose2d(64, 64, 2, stride=2)
        self.de1 = Block(128, 64, 64)

        self.conv_last = nn.Conv2d(64, out_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, x):
        x, e1 = self.en1(x)
        x, e2 = self.en2(x)
        x, e3 = self.en3(x)
        x, e4 = self.en4(x)
        _, x = self.en5(x)

        x = self.upsample4(x)
        x = torch.cat([x, e4], dim=1)
        _, x = self.de4(x)

        x = self.upsample3(x)
        x = torch.cat([x, e3], dim=1)
        _, x = self.de3(x)

        x = self.upsample2(x)
        x = torch.cat([x, e2], dim=1)
        _, x = self.de2(x)

        x = self.upsample1(x)
        x = torch.cat([x, e1], dim=1)
        _, x = self.de1(x)

        x = self.conv_last(x)

        return x

def dice_loss(y_hat, y):
    smooth = 1e-6
    y_hat = y_hat.view(-1)
    y = y.view(-1)
    intersection = (y_hat * y).sum()
    union = y_hat.sum() + y.sum()
    dice = (2 * intersection + smooth) / (union + smooth)
    return 1 - dice