Spaces:
Sleeping
Sleeping
File size: 75,921 Bytes
d8d14f1 d58046e d8d14f1 236b34c d8d14f1 d58046e d8d14f1 d58046e d8d14f1 d58046e d8d14f1 d58046e d8d14f1 d58046e d8d14f1 d58046e d8d14f1 d58046e d8d14f1 d58046e d8d14f1 d58046e d8d14f1 d58046e d8d14f1 c8c48de 905f063 c8c48de d8d14f1 236b34c d8d14f1 236b34c d8d14f1 236b34c d8d14f1 236b34c d8d14f1 866e55d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 |
import os
from dotenv import load_dotenv
from typing import AsyncGenerator, List, Dict, Any, Tuple, Optional
import json
import time
import asyncio
import gradio as gr
from swarms.structs.agent import Agent
from swarms.structs.swarm_router import SwarmRouter
from swarms.utils.loguru_logger import initialize_logger
import re
import csv # Import the csv module for csv parsing
from swarms.utils.litellm_wrapper import LiteLLM
from litellm import models_by_provider
from dotenv import set_key, find_dotenv
import logging # Import the logging module
import litellm # Import litellm exception
# Initialize logger
load_dotenv()
# Initialize logger
logger = initialize_logger(log_folder="swarm_ui")
# Define the path to agent_prompts.json
PROMPT_JSON_PATH = os.path.join(
os.path.dirname(os.path.abspath(__file__)), "agent_prompts.json"
)
logger.info(f"Loading prompts from: {PROMPT_JSON_PATH}")
# Load prompts first so its available for create_app
def load_prompts_from_json() -> Dict[str, str]:
try:
if not os.path.exists(PROMPT_JSON_PATH):
# Load default prompts
return {
"Agent-Data_Extractor": "You are a data extraction agent...",
"Agent-Summarizer": "You are a summarization agent...",
"Agent-Onboarding_Agent": "You are an onboarding agent...",
}
with open(PROMPT_JSON_PATH, "r", encoding="utf-8") as f:
try:
data = json.load(f)
except json.JSONDecodeError:
# Load default prompts
return {
"Agent-Data_Extractor": "You are a data extraction agent...",
"Agent-Summarizer": "You are a summarization agent...",
"Agent-Onboarding_Agent": "You are an onboarding agent...",
}
if not isinstance(data, dict):
# Load default prompts
return {
"Agent-Data_Extractor": "You are a data extraction agent...",
"Agent-Summarizer": "You are a summarization agent...",
"Agent-Onboarding_Agent": "You are an onboarding agent...",
}
prompts = {}
for agent_name, details in data.items():
if (
not isinstance(details, dict)
or "system_prompt" not in details
):
continue
prompts[agent_name] = details["system_prompt"]
if not prompts:
# Load default prompts
return {
"Agent-Data_Extractor": "You are a data extraction agent...",
"Agent-Summarizer": "You are a summarization agent...",
"Agent-Onboarding_Agent": "You are an onboarding agent...",
}
return prompts
except Exception:
# Load default prompts
return {
"Agent-Data_Extractor": "You are a data extraction agent...",
"Agent-Summarizer": "You are a summarization agent...",
"Agent-Onboarding_Agent": "You are an onboarding agent...",
}
AGENT_PROMPTS = load_prompts_from_json()
api_keys = {}
def initialize_agents(
dynamic_temp: float,
agent_keys: List[str],
model_name: str,
provider: str,
api_key: str,
temperature: float,
max_tokens: int,
) -> List[Agent]:
logger.info("Initializing agents...")
agents = []
seen_names = set()
try:
for agent_key in agent_keys:
if agent_key not in AGENT_PROMPTS:
raise ValueError(f"Invalid agent key: {agent_key}")
agent_prompt = AGENT_PROMPTS[agent_key]
agent_name = agent_key
# Ensure unique agent names
base_name = agent_name
counter = 1
while agent_name in seen_names:
agent_name = f"{base_name}_{counter}"
counter += 1
seen_names.add(agent_name)
# Set API key using os.environ temporarily
if provider == "openai":
os.environ["OPENAI_API_KEY"] = api_key
elif provider == "anthropic":
os.environ["ANTHROPIC_API_KEY"] = api_key
elif provider == "cohere":
os.environ["COHERE_API_KEY"] = api_key
elif provider == "gemini":
os.environ["GEMINI_API_KEY"] = api_key
elif provider == "mistral":
os.environ["MISTRAL_API_KEY"] = api_key
elif provider == "groq":
os.environ["GROQ_API_KEY"] = api_key
elif provider == "perplexity":
os.environ["PERPLEXITY_API_KEY"] = api_key
# Add other providers and their environment variable names as needed
# Create LiteLLM instance (Now it will read from os.environ)
llm = LiteLLM(
model_name=model_name,
system_prompt=agent_prompt,
temperature=temperature,
max_tokens=max_tokens,
)
agent = Agent(
agent_name=agent_name,
system_prompt=agent_prompt,
llm=llm,
max_loops=1,
autosave=True,
verbose=True,
dynamic_temperature_enabled=True,
saved_state_path=f"agent_{agent_name}.json",
user_name="pe_firm",
retry_attempts=1,
context_length=200000,
output_type="string", # here is the output type which is string
temperature=dynamic_temp,
)
print(f"Agent created: {agent.agent_name}")
agents.append(agent)
logger.info(f"Agents initialized successfully: {[agent.agent_name for agent in agents]}")
return agents
except Exception as e:
logger.error(f"Error initializing agents: {e}", exc_info=True)
raise
def validate_flow(flow, agents_dict):
logger.info(f"Validating flow: {flow}")
agent_names = flow.split("->")
for agent in agent_names:
agent = agent.strip()
if agent not in agents_dict:
logger.error(f"Agent '{agent}' specified in the flow does not exist.")
raise ValueError(
f"Agent '{agent}' specified in the flow does not exist."
)
logger.info(f"Flow validated successfully: {flow}")
class TaskExecutionError(Exception):
"""Custom exception for task execution errors."""
def __init__(self, message: str):
self.message = message
super().__init__(self.message)
def __str__(self):
return f"TaskExecutionError: {self.message}"
async def execute_task(
task: str,
max_loops: int,
dynamic_temp: float,
swarm_type: str,
agent_keys: List[str],
flow: str = None,
model_name: str = "gpt-4o",
provider: str = "openai",
api_key: str = None,
temperature: float = 0.5,
max_tokens: int = 4000,
agents: dict = None,
log_display=None,
error_display=None
) -> AsyncGenerator[Tuple[Any, Optional["SwarmRouter"], str], None]: # Changed the return type here
logger.info(f"Executing task: {task} with swarm type: {swarm_type}")
try:
if not task:
logger.error("Task description is missing.")
yield "Please provide a task description.", gr.update(visible=True), ""
return
if not agent_keys:
logger.error("No agents selected.")
yield "Please select at least one agent.", gr.update(visible=True), ""
return
if not provider:
logger.error("Provider is missing.")
yield "Please select a provider.", gr.update(visible=True), ""
return
if not model_name:
logger.error("Model is missing.")
yield "Please select a model.", gr.update(visible=True), ""
return
if not api_key:
logger.error("API Key is missing.")
yield "Please enter an API Key.", gr.update(visible=True), ""
return
# Initialize agents
try:
if not agents:
agents = initialize_agents(
dynamic_temp,
agent_keys,
model_name,
provider,
api_key,
temperature,
max_tokens,
)
except Exception as e:
logger.error(f"Error initializing agents: {e}", exc_info=True)
yield f"Error initializing agents: {e}", gr.update(visible=True), ""
return
# Swarm-specific configurations
router_kwargs = {
"name": "multi-agent-workflow",
"description": f"Executing {swarm_type} workflow",
"max_loops": max_loops,
"agents": list(agents.values()),
"autosave": True,
"return_json": True,
"output_type": "string", # Default output type
"swarm_type": swarm_type, # Pass swarm_type here
}
if swarm_type == "AgentRearrange":
if not flow:
logger.error("Flow configuration is missing for AgentRearrange.")
yield "Flow configuration is required for AgentRearrange", gr.update(visible=True), ""
return
# Generate unique agent names in the flow
flow_agents = []
used_agent_names = set()
for agent_key in flow.split("->"):
agent_key = agent_key.strip()
base_agent_name = agent_key
count = 1
while agent_key in used_agent_names:
agent_key = f"{base_agent_name}_{count}"
count += 1
used_agent_names.add(agent_key)
flow_agents.append(agent_key)
# Update the flow string with unique names
flow = " -> ".join(flow_agents)
logger.info(f"Updated Flow string: {flow}")
router_kwargs["flow"] = flow
router_kwargs["output_type"] = "string" # Changed output type here
if swarm_type == "MixtureOfAgents":
if len(agents) < 2:
logger.error("MixtureOfAgents requires at least 2 agents.")
yield "MixtureOfAgents requires at least 2 agents", gr.update(visible=True), ""
return
if swarm_type == "SequentialWorkflow":
if len(agents) < 2:
logger.error("SequentialWorkflow requires at least 2 agents.")
yield "SequentialWorkflow requires at least 2 agents", gr.update(visible=True), ""
return
if swarm_type == "ConcurrentWorkflow":
pass
if swarm_type == "SpreadSheetSwarm":
pass
if swarm_type == "auto":
pass
# Create and execute SwarmRouter
try:
timeout = (
450 if swarm_type != "SpreadSheetSwarm" else 900
) # SpreadSheetSwarm will have different timeout.
if swarm_type == "AgentRearrange":
from swarms.structs.rearrange import AgentRearrange
router = AgentRearrange(
agents=list(agents.values()),
flow=flow,
max_loops=max_loops,
name="multi-agent-workflow",
description=f"Executing {swarm_type} workflow",
# autosave=True,
return_json=True,
output_type="string", # Changed output type according to agent rearrange
)
result = router(task) # Changed run method
logger.info(f"AgentRearrange task executed successfully.")
yield result, None, ""
return
# For other swarm types use the SwarmRouter and its run method
router = SwarmRouter(**router_kwargs) # Initialize SwarmRouter
if swarm_type == "ConcurrentWorkflow":
async def run_agent_task(agent, task_):
return agent.run(task_)
tasks = [
run_agent_task(agent, task)
for agent in list(agents.values())
]
responses = await asyncio.gather(*tasks)
result = {}
for agent, response in zip(list(agents.values()), responses):
result[agent.agent_name] = response
# Convert the result to JSON string for parsing
result = json.dumps(
{
"input" : {
"swarm_id" : "concurrent_workflow_swarm_id",
"name" : "ConcurrentWorkflow",
"flow" : "->".join([agent.agent_name for agent in list(agents.values())])
},
"time" : time.time(),
"outputs" : [
{
"agent_name": agent_name,
"steps" : [{"role":"assistant", "content":response}]
} for agent_name, response in result.items()
]
}
)
logger.info(f"ConcurrentWorkflow task executed successfully.")
yield result, None, ""
return
elif swarm_type == "auto":
result = await asyncio.wait_for(
asyncio.to_thread(router.run, task),
timeout=timeout
)
if isinstance(result,dict):
result = json.dumps(
{
"input" : {
"swarm_id" : "auto_swarm_id",
"name" : "AutoSwarm",
"flow" : "->".join([agent.agent_name for agent in list(agents.values())])
},
"time" : time.time(),
"outputs" : [
{
"agent_name": agent.agent_name,
"steps" : [{"role":"assistant", "content":response}]
} for agent, response in result.items()
]
}
)
elif isinstance(result, str):
result = json.dumps(
{
"input" : {
"swarm_id" : "auto_swarm_id",
"name" : "AutoSwarm",
"flow" : "->".join([agent.agent_name for agent in list(agents.values())])
},
"time" : time.time(),
"outputs" : [
{
"agent_name": "auto",
"steps" : [{"role":"assistant", "content":result}]
}
]
}
)
else :
logger.error("Auto Swarm returned an unexpected type")
yield "Error : Auto Swarm returned an unexpected type", gr.update(visible=True), ""
return
logger.info(f"Auto task executed successfully.")
yield result, None, ""
return
else:
result = await asyncio.wait_for(
asyncio.to_thread(router.run, task),
timeout=timeout
)
logger.info(f"{swarm_type} task executed successfully.")
yield result, None, ""
return
except asyncio.TimeoutError as e:
logger.error(f"Task execution timed out after {timeout} seconds", exc_info=True)
yield f"Task execution timed out after {timeout} seconds", gr.update(visible=True), ""
return
except litellm.exceptions.APIError as e: # Catch litellm APIError
logger.error(f"LiteLLM API Error: {e}", exc_info=True)
yield f"LiteLLM API Error: {e}", gr.update(visible=True), ""
return
except litellm.exceptions.AuthenticationError as e: # Catch litellm AuthenticationError
logger.error(f"LiteLLM Authentication Error: {e}", exc_info=True)
yield f"LiteLLM Authentication Error: {e}", gr.update(visible=True), ""
return
except Exception as e:
logger.error(f"Error executing task: {e}", exc_info=True)
yield f"Error executing task: {e}", gr.update(visible=True), ""
return
except TaskExecutionError as e:
logger.error(f"Task execution error: {e}")
yield str(e), gr.update(visible=True), ""
return
except Exception as e:
logger.error(f"An unexpected error occurred: {e}", exc_info=True)
yield f"An unexpected error occurred: {e}", gr.update(visible=True), ""
return
finally:
logger.info(f"Task execution finished for: {task} with swarm type: {swarm_type}")
def format_output(data:Optional[str], swarm_type:str, error_display=None) -> str:
if data is None:
return "Error : No output from the swarm."
if swarm_type == "AgentRearrange":
return parse_agent_rearrange_output(data, error_display)
elif swarm_type == "MixtureOfAgents":
return parse_mixture_of_agents_output(data, error_display)
elif swarm_type in ["SequentialWorkflow", "ConcurrentWorkflow"]:
return parse_sequential_workflow_output(data, error_display)
elif swarm_type == "SpreadSheetSwarm":
if os.path.exists(data):
return parse_spreadsheet_swarm_output(data, error_display)
else:
return data # Directly return JSON response
elif swarm_type == "auto":
return parse_auto_swarm_output(data, error_display)
else:
return "Unsupported swarm type."
def parse_mixture_of_agents_data(data: dict, error_display=None) -> str:
"""Parses the MixtureOfAgents output data and formats it for display."""
logger.info("Parsing MixtureOfAgents data within Auto Swarm output...")
try:
output = ""
if "InputConfig" in data and isinstance(data["InputConfig"], dict):
input_config = data["InputConfig"]
output += f"Mixture of Agents Workflow Details\n\n"
output += f"Name: `{input_config.get('name', 'N/A')}`\n"
output += (
f"Description:"
f" `{input_config.get('description', 'N/A')}`\n\n---\n"
)
output += f"Agent Task Execution\n\n"
for agent in input_config.get("agents", []):
output += (
f"Agent: `{agent.get('agent_name', 'N/A')}`\n"
)
if "normal_agent_outputs" in data and isinstance(
data["normal_agent_outputs"], list
):
for i, agent_output in enumerate(
data["normal_agent_outputs"], start=3
):
agent_name = agent_output.get("agent_name", "N/A")
output += f"Run {(3 - i)} (Agent: `{agent_name}`)\n\n"
for j, step in enumerate(
agent_output.get("steps", []), start=3
):
if (
isinstance(step, dict)
and "role" in step
and "content" in step
and step["role"].strip() != "System:"
):
content = step["content"]
output += f"Step {(3 - j)}: \n"
output += f"Response:\n {content}\n\n"
if "aggregator_agent_summary" in data:
output += (
f"\nAggregated Summary :\n"
f"{data['aggregator_agent_summary']}\n{'=' * 50}\n"
)
logger.info("MixtureOfAgents data parsed successfully within Auto Swarm.")
return output
except Exception as e:
logger.error(
f"Error during parsing MixtureOfAgents data within Auto Swarm: {e}",
exc_info=True,
)
return f"Error during parsing: {str(e)}"
def parse_auto_swarm_output(data: Optional[str], error_display=None) -> str:
"""Parses the auto swarm output string and formats it for display."""
logger.info("Parsing Auto Swarm output...")
if data is None:
logger.error("No data provided for parsing Auto Swarm output.")
return "Error: No data provided for parsing."
print(f"Raw data received for parsing:\n{data}") # Debug: Print raw data
try:
parsed_data = json.loads(data)
errors = []
# Basic structure validation
if (
"input" not in parsed_data
or not isinstance(parsed_data.get("input"), dict)
):
errors.append(
"Error: 'input' data is missing or not a dictionary."
)
else:
if "swarm_id" not in parsed_data["input"]:
errors.append(
"Error: 'swarm_id' key is missing in the 'input'."
)
if "name" not in parsed_data["input"]:
errors.append(
"Error: 'name' key is missing in the 'input'."
)
if "flow" not in parsed_data["input"]:
errors.append(
"Error: 'flow' key is missing in the 'input'."
)
if "time" not in parsed_data:
errors.append("Error: 'time' key is missing.")
if errors:
logger.error(
f"Errors found while parsing Auto Swarm output: {errors}"
)
return "\n".join(errors)
swarm_id = parsed_data["input"]["swarm_id"]
swarm_name = parsed_data["input"]["name"]
agent_flow = parsed_data["input"]["flow"]
overall_time = parsed_data["time"]
output = f"Workflow Execution Details\n\n"
output += f"Swarm ID: `{swarm_id}`\n"
output += f"Swarm Name: `{swarm_name}`\n"
output += f"Agent Flow: `{agent_flow}`\n\n---\n"
output += f"Agent Task Execution\n\n"
# Handle nested MixtureOfAgents data or other swarm type data
if (
"outputs" in parsed_data
and isinstance(parsed_data["outputs"], list)
and parsed_data["outputs"]
and isinstance(parsed_data["outputs"][0], dict)
):
if parsed_data["outputs"][0].get("agent_name") == "auto":
mixture_data = parsed_data["outputs"][0].get("steps", [])
if mixture_data and isinstance(mixture_data[0], dict) and "content" in mixture_data[0]:
try:
mixture_content = json.loads(mixture_data[0]["content"])
output += parse_mixture_of_agents_data(mixture_content)
except json.JSONDecodeError as e:
logger.error(f"Error decoding nested MixtureOfAgents data: {e}", exc_info=True)
return f"Error decoding nested MixtureOfAgents data: {e}"
else:
for i, agent_output in enumerate(parsed_data["outputs"], start=3):
if not isinstance(agent_output, dict):
errors.append(f"Error: Agent output at index {i} is not a dictionary")
continue
if "agent_name" not in agent_output:
errors.append(f"Error: 'agent_name' key is missing at index {i}")
continue
if "steps" not in agent_output:
errors.append(f"Error: 'steps' key is missing at index {i}")
continue
if agent_output["steps"] is None:
errors.append(f"Error: 'steps' data is None at index {i}")
continue
if not isinstance(agent_output["steps"], list):
errors.append(f"Error: 'steps' data is not a list at index {i}")
continue
agent_name = agent_output["agent_name"]
output += f"Run {(3-i)} (Agent: `{agent_name}`)\n\n"
# Iterate over steps
for j, step in enumerate(agent_output["steps"], start=3):
if not isinstance(step, dict):
errors.append(f"Error: step at index {j} is not a dictionary at {i} agent output.")
continue
if step is None:
errors.append(f"Error: step at index {j} is None at {i} agent output")
continue
if "role" not in step:
errors.append(f"Error: 'role' key missing at step {j} at {i} agent output.")
continue
if "content" not in step:
errors.append(f"Error: 'content' key missing at step {j} at {i} agent output.")
continue
if step["role"].strip() != "System:": # Filter out system prompts
content = step["content"]
output += f"Step {(3-j)}:\n"
output += f"Response : {content}\n\n"
else:
logger.error("Error: 'outputs' data is not in the expected format.")
return "Error: 'outputs' data is not in the expected format."
output += f"Overall Completion Time: `{overall_time}`"
if errors:
logger.error(
f"Errors found while parsing Auto Swarm output: {errors}"
)
return "\n".join(errors)
logger.info("Auto Swarm output parsed successfully.")
return output
except json.JSONDecodeError as e:
logger.error(
f"Error during parsing Auto Swarm output: {e}", exc_info=True
)
return f"Error during parsing json.JSONDecodeError: {e}"
except Exception as e:
logger.error(
f"Error during parsing Auto Swarm output: {e}", exc_info=True
)
return f"Error during parsing: {str(e)}"
def parse_agent_rearrange_output(data: Optional[str], error_display=None) -> str:
"""
Parses the AgentRearrange output string and formats it for display.
"""
logger.info("Parsing AgentRearrange output...")
if data is None:
logger.error("No data provided for parsing AgentRearrange output.")
return "Error: No data provided for parsing."
print(
f"Raw data received for parsing:\n{data}"
) # Debug: Print raw data
try:
parsed_data = json.loads(data)
errors = []
if (
"input" not in parsed_data
or not isinstance(parsed_data.get("input"), dict)
):
errors.append(
"Error: 'input' data is missing or not a dictionary."
)
else:
if "swarm_id" not in parsed_data["input"]:
errors.append(
"Error: 'swarm_id' key is missing in the 'input'."
)
if "name" not in parsed_data["input"]:
errors.append(
"Error: 'name' key is missing in the 'input'."
)
if "flow" not in parsed_data["input"]:
errors.append(
"Error: 'flow' key is missing in the 'input'."
)
if "time" not in parsed_data:
errors.append("Error: 'time' key is missing.")
if errors:
logger.error(f"Errors found while parsing AgentRearrange output: {errors}")
return "\n".join(errors)
swarm_id = parsed_data["input"]["swarm_id"]
swarm_name = parsed_data["input"]["name"]
agent_flow = parsed_data["input"]["flow"]
overall_time = parsed_data["time"]
output = f"Workflow Execution Details\n\n"
output += f"Swarm ID: `{swarm_id}`\n"
output += f"Swarm Name: `{swarm_name}`\n"
output += f"Agent Flow: `{agent_flow}`\n\n---\n"
output += f"Agent Task Execution\n\n"
if "outputs" not in parsed_data:
errors.append("Error: 'outputs' key is missing")
elif parsed_data["outputs"] is None:
errors.append("Error: 'outputs' data is None")
elif not isinstance(parsed_data["outputs"], list):
errors.append("Error: 'outputs' data is not a list.")
elif not parsed_data["outputs"]:
errors.append("Error: 'outputs' list is empty.")
if errors:
logger.error(f"Errors found while parsing AgentRearrange output: {errors}")
return "\n".join(errors)
for i, agent_output in enumerate(
parsed_data["outputs"], start=3
):
if not isinstance(agent_output, dict):
errors.append(
f"Error: Agent output at index {i} is not a"
" dictionary"
)
continue
if "agent_name" not in agent_output:
errors.append(
f"Error: 'agent_name' key is missing at index {i}"
)
continue
if "steps" not in agent_output:
errors.append(
f"Error: 'steps' key is missing at index {i}"
)
continue
if agent_output["steps"] is None:
errors.append(
f"Error: 'steps' data is None at index {i}"
)
continue
if not isinstance(agent_output["steps"], list):
errors.append(
f"Error: 'steps' data is not a list at index {i}"
)
continue
if not agent_output["steps"]:
errors.append(
f"Error: 'steps' list is empty at index {i}"
)
continue
agent_name = agent_output["agent_name"]
output += f"Run {(3-i)} (Agent: `{agent_name}`)**\n\n"
# output += "<details>\n<summary>Show/Hide Agent Steps</summary>\n\n"
# Iterate over steps
for j, step in enumerate(agent_output["steps"], start=3):
if not isinstance(step, dict):
errors.append(
f"Error: step at index {j} is not a dictionary"
f" at {i} agent output."
)
continue
if step is None:
errors.append(
f"Error: step at index {j} is None at {i} agent"
" output"
)
continue
if "role" not in step:
errors.append(
f"Error: 'role' key missing at step {j} at {i}"
" agent output."
)
continue
if "content" not in step:
errors.append(
f"Error: 'content' key missing at step {j} at"
f" {i} agent output."
)
continue
if step["role"].strip() != "System:": # Filter out system prompts
# role = step["role"]
content = step["content"]
output += f"Step {(3-j)}: \n"
output += f"Response :\n {content}\n\n"
# output += "</details>\n\n---\n"
output += f"Overall Completion Time: `{overall_time}`"
if errors:
logger.error(f"Errors found while parsing AgentRearrange output: {errors}")
return "\n".join(errors)
else:
logger.info("AgentRearrange output parsed successfully.")
return output
except json.JSONDecodeError as e:
logger.error(f"Error during parsing AgentRearrange output: {e}", exc_info=True)
return f"Error during parsing: json.JSONDecodeError {e}"
except Exception as e:
logger.error(f"Error during parsing AgentRearrange output: {e}", exc_info=True)
return f"Error during parsing: {str(e)}"
def parse_mixture_of_agents_output(data: Optional[str], error_display=None) -> str:
"""Parses the MixtureOfAgents output string and formats it for display."""
logger.info("Parsing MixtureOfAgents output...")
if data is None:
logger.error("No data provided for parsing MixtureOfAgents output.")
return "Error: No data provided for parsing."
print(f"Raw data received for parsing:\n{data}") # Debug: Print raw data
try:
parsed_data = json.loads(data)
if "InputConfig" not in parsed_data or not isinstance(parsed_data["InputConfig"], dict):
logger.error("Error: 'InputConfig' data is missing or not a dictionary.")
return "Error: 'InputConfig' data is missing or not a dictionary."
if "name" not in parsed_data["InputConfig"]:
logger.error("Error: 'name' key is missing in 'InputConfig'.")
return "Error: 'name' key is missing in 'InputConfig'."
if "description" not in parsed_data["InputConfig"]:
logger.error("Error: 'description' key is missing in 'InputConfig'.")
return "Error: 'description' key is missing in 'InputConfig'."
if "agents" not in parsed_data["InputConfig"] or not isinstance(parsed_data["InputConfig"]["agents"], list) :
logger.error("Error: 'agents' key is missing in 'InputConfig' or not a list.")
return "Error: 'agents' key is missing in 'InputConfig' or not a list."
name = parsed_data["InputConfig"]["name"]
description = parsed_data["InputConfig"]["description"]
output = f"Mixture of Agents Workflow Details\n\n"
output += f"Name: `{name}`\n"
output += f"Description: `{description}`\n\n---\n"
output += f"Agent Task Execution\n\n"
for agent in parsed_data["InputConfig"]["agents"]:
if not isinstance(agent, dict):
logger.error("Error: agent is not a dict in InputConfig agents")
return "Error: agent is not a dict in InputConfig agents"
if "agent_name" not in agent:
logger.error("Error: 'agent_name' key is missing in agents.")
return "Error: 'agent_name' key is missing in agents."
if "system_prompt" not in agent:
logger.error("Error: 'system_prompt' key is missing in agents.")
return f"Error: 'system_prompt' key is missing in agents."
agent_name = agent["agent_name"]
# system_prompt = agent["system_prompt"]
output += f"Agent: `{agent_name}`\n"
# output += f"* **System Prompt:** `{system_prompt}`\n\n"
if "normal_agent_outputs" not in parsed_data or not isinstance(parsed_data["normal_agent_outputs"], list) :
logger.error("Error: 'normal_agent_outputs' key is missing or not a list.")
return "Error: 'normal_agent_outputs' key is missing or not a list."
for i, agent_output in enumerate(parsed_data["normal_agent_outputs"], start=3):
if not isinstance(agent_output, dict):
logger.error(f"Error: agent output at index {i} is not a dictionary.")
return f"Error: agent output at index {i} is not a dictionary."
if "agent_name" not in agent_output:
logger.error(f"Error: 'agent_name' key is missing at index {i}")
return f"Error: 'agent_name' key is missing at index {i}"
if "steps" not in agent_output:
logger.error(f"Error: 'steps' key is missing at index {i}")
return f"Error: 'steps' key is missing at index {i}"
if agent_output["steps"] is None:
logger.error(f"Error: 'steps' is None at index {i}")
return f"Error: 'steps' is None at index {i}"
if not isinstance(agent_output["steps"], list):
logger.error(f"Error: 'steps' data is not a list at index {i}.")
return f"Error: 'steps' data is not a list at index {i}."
agent_name = agent_output["agent_name"]
output += f"Run {(3-i)} (Agent: `{agent_name}`)\n\n"
# output += "<details>\n<summary>Show/Hide Agent Steps</summary>\n\n"
for j, step in enumerate(agent_output["steps"], start=3):
if not isinstance(step, dict):
logger.error(f"Error: step at index {j} is not a dictionary at {i} agent output.")
return f"Error: step at index {j} is not a dictionary at {i} agent output."
if step is None:
logger.error(f"Error: step at index {j} is None at {i} agent output.")
return f"Error: step at index {j} is None at {i} agent output."
if "role" not in step:
logger.error(f"Error: 'role' key missing at step {j} at {i} agent output.")
return f"Error: 'role' key missing at step {j} at {i} agent output."
if "content" not in step:
logger.error(f"Error: 'content' key missing at step {j} at {i} agent output.")
return f"Error: 'content' key missing at step {j} at {i} agent output."
if step["role"].strip() != "System:": # Filter out system prompts
# role = step["role"]
content = step["content"]
output += f"Step {(3-j)}: \n"
output += f"Response:\n {content}\n\n"
# output += "</details>\n\n---\n"
if "aggregator_agent_summary" in parsed_data:
output += f"\nAggregated Summary :\n{parsed_data['aggregator_agent_summary']}\n{'=' * 50}\n"
logger.info("MixtureOfAgents output parsed successfully.")
return output
except json.JSONDecodeError as e:
logger.error(f"Error during parsing MixtureOfAgents output: {e}", exc_info=True)
return f"Error during parsing json.JSONDecodeError : {e}"
except Exception as e:
logger.error(f"Error during parsing MixtureOfAgents output: {e}", exc_info=True)
return f"Error during parsing: {str(e)}"
def parse_sequential_workflow_output(data: Optional[str], error_display=None) -> str:
"""Parses the SequentialWorkflow output string and formats it for display."""
logger.info("Parsing SequentialWorkflow output...")
if data is None:
logger.error("No data provided for parsing SequentialWorkflow output.")
return "Error: No data provided for parsing."
print(f"Raw data received for parsing:\n{data}") # Debug: Print raw data
try:
parsed_data = json.loads(data)
if "input" not in parsed_data or not isinstance(parsed_data.get("input"), dict):
logger.error("Error: 'input' data is missing or not a dictionary.")
return "Error: 'input' data is missing or not a dictionary."
if "swarm_id" not in parsed_data["input"] :
logger.error("Error: 'swarm_id' key is missing in the 'input'.")
return "Error: 'swarm_id' key is missing in the 'input'."
if "name" not in parsed_data["input"]:
logger.error("Error: 'name' key is missing in the 'input'.")
return "Error: 'name' key is missing in the 'input'."
if "flow" not in parsed_data["input"]:
logger.error("Error: 'flow' key is missing in the 'input'.")
return "Error: 'flow' key is missing in the 'input'."
if "time" not in parsed_data :
logger.error("Error: 'time' key is missing.")
return "Error: 'time' key is missing."
swarm_id = parsed_data["input"]["swarm_id"]
swarm_name = parsed_data["input"]["name"]
agent_flow = parsed_data["input"]["flow"]
overall_time = parsed_data["time"]
output = f"Workflow Execution Details\n\n"
output += f"Swarm ID: `{swarm_id}`\n"
output += f"Swarm Name: `{swarm_name}`\n"
output += f"Agent Flow: `{agent_flow}`\n\n---\n"
output += f"Agent Task Execution\n\n"
if "outputs" not in parsed_data:
logger.error("Error: 'outputs' key is missing")
return "Error: 'outputs' key is missing"
if parsed_data["outputs"] is None:
logger.error("Error: 'outputs' data is None")
return "Error: 'outputs' data is None"
if not isinstance(parsed_data["outputs"], list):
logger.error("Error: 'outputs' data is not a list.")
return "Error: 'outputs' data is not a list."
for i, agent_output in enumerate(parsed_data["outputs"], start=3):
if not isinstance(agent_output, dict):
logger.error(f"Error: Agent output at index {i} is not a dictionary")
return f"Error: Agent output at index {i} is not a dictionary"
if "agent_name" not in agent_output:
logger.error(f"Error: 'agent_name' key is missing at index {i}")
return f"Error: 'agent_name' key is missing at index {i}"
if "steps" not in agent_output:
logger.error(f"Error: 'steps' key is missing at index {i}")
return f"Error: 'steps' key is missing at index {i}"
if agent_output["steps"] is None:
logger.error(f"Error: 'steps' data is None at index {i}")
return f"Error: 'steps' data is None at index {i}"
if not isinstance(agent_output["steps"], list):
logger.error(f"Error: 'steps' data is not a list at index {i}")
return f"Error: 'steps' data is not a list at index {i}"
agent_name = agent_output["agent_name"]
output += f"Run {(3-i)} (Agent: `{agent_name}`)\n\n"
# output += "<details>\n<summary>Show/Hide Agent Steps</summary>\n\n"
# Iterate over steps
for j, step in enumerate(agent_output["steps"], start=3):
if not isinstance(step, dict):
logger.error(f"Error: step at index {j} is not a dictionary at {i} agent output.")
return f"Error: step at index {j} is not a dictionary at {i} agent output."
if step is None:
logger.error(f"Error: step at index {j} is None at {i} agent output")
return f"Error: step at index {j} is None at {i} agent output"
if "role" not in step:
logger.error(f"Error: 'role' key missing at step {j} at {i} agent output.")
return f"Error: 'role' key missing at step {j} at {i} agent output."
if "content" not in step:
logger.error(f"Error: 'content' key missing at step {j} at {i} agent output.")
return f"Error: 'content' key missing at step {j} at {i} agent output."
if step["role"].strip() != "System:": # Filter out system prompts
# role = step["role"]
content = step["content"]
output += f"Step {(3-j)}:\n"
output += f"Response : {content}\n\n"
# output += "</details>\n\n---\n"
output += f"Overall Completion Time: `{overall_time}`"
logger.info("SequentialWorkflow output parsed successfully.")
return output
except json.JSONDecodeError as e :
logger.error(f"Error during parsing SequentialWorkflow output: {e}", exc_info=True)
return f"Error during parsing json.JSONDecodeError : {e}"
except Exception as e:
logger.error(f"Error during parsing SequentialWorkflow output: {e}", exc_info=True)
return f"Error during parsing: {str(e)}"
def parse_spreadsheet_swarm_output(file_path: str, error_display=None) -> str:
"""Parses the SpreadSheetSwarm output CSV file and formats it for display."""
logger.info("Parsing SpreadSheetSwarm output...")
if not file_path:
logger.error("No file path provided for parsing SpreadSheetSwarm output.")
return "Error: No file path provided for parsing."
print(f"Parsing spreadsheet output from: {file_path}")
try:
with open(file_path, 'r', encoding='utf-8') as file:
csv_reader = csv.reader(file)
header = next(csv_reader, None) # Read the header row
if not header:
logger.error("CSV file is empty or has no header.")
return "Error: CSV file is empty or has no header"
output = "### Spreadsheet Swarm Output ###\n\n"
output += "| " + " | ".join(header) + " |\n" # Adding header
output += "| " + " | ".join(["---"] * len(header)) + " |\n" # Adding header seperator
for row in csv_reader:
output += "| " + " | ".join(row) + " |\n" # Adding row
output += "\n"
logger.info("SpreadSheetSwarm output parsed successfully.")
return output
except FileNotFoundError as e:
logger.error(f"Error during parsing SpreadSheetSwarm output: {e}", exc_info=True)
return "Error: CSV file not found."
except Exception as e:
logger.error(f"Error during parsing SpreadSheetSwarm output: {e}", exc_info=True)
return f"Error during parsing CSV file: {str(e)}"
def parse_json_output(data:str, error_display=None) -> str:
"""Parses a JSON string and formats it for display."""
logger.info("Parsing JSON output...")
if not data:
logger.error("No data provided for parsing JSON output.")
return "Error: No data provided for parsing."
print(f"Parsing json output from: {data}")
try:
parsed_data = json.loads(data)
output = "### Swarm Metadata ###\n\n"
for key,value in parsed_data.items():
if key == "outputs":
output += f"**{key}**:\n"
if isinstance(value, list):
for item in value:
output += f" - Agent Name : {item.get('agent_name', 'N/A')}\n"
output += f" Task : {item.get('task', 'N/A')}\n"
output += f" Result : {item.get('result', 'N/A')}\n"
output += f" Timestamp : {item.get('timestamp', 'N/A')}\n\n"
else :
output += f" {value}\n"
else :
output += f"**{key}**: {value}\n"
logger.info("JSON output parsed successfully.")
return output
except json.JSONDecodeError as e:
logger.error(f"Error during parsing JSON output: {e}", exc_info=True)
return f"Error: Invalid JSON format - {e}"
except Exception as e:
logger.error(f"Error during parsing JSON output: {e}", exc_info=True)
return f"Error during JSON parsing: {str(e)}"
class UI:
def __init__(self, theme):
self.theme = theme
self.blocks = gr.Blocks(theme=self.theme)
self.components = {} # Dictionary to store UI components
def create_markdown(self, text, is_header=False):
if is_header:
markdown = gr.Markdown(
f"<h1 style='color: #ffffff; text-align:"
f" center;'>{text}</h1>"
)
else:
markdown = gr.Markdown(
f"<p style='color: #cccccc; text-align:"
f" center;'>{text}</p>"
)
self.components[f"markdown_{text}"] = markdown
return markdown
def create_text_input(self, label, lines=3, placeholder=""):
text_input = gr.Textbox(
label=label,
lines=lines,
placeholder=placeholder,
elem_classes=["custom-input"],
)
self.components[f"text_input_{label}"] = text_input
return text_input
def create_slider(
self, label, minimum=0, maximum=1, value=0.5, step=0.1
):
slider = gr.Slider(
minimum=minimum,
maximum=maximum,
value=value,
step=step,
label=label,
interactive=True,
)
self.components[f"slider_{label}"] = slider
return slider
def create_dropdown(
self, label, choices, value=None, multiselect=False
):
if not choices:
choices = ["No options available"]
if value is None and choices:
value = choices[0] if not multiselect else [choices[0]]
dropdown = gr.Dropdown(
label=label,
choices=choices,
value=value,
interactive=True,
multiselect=multiselect,
)
self.components[f"dropdown_{label}"] = dropdown
return dropdown
def create_button(self, text, variant="primary"):
button = gr.Button(text, variant=variant)
self.components[f"button_{text}"] = button
return button
def create_text_output(self, label, lines=10, placeholder=""):
text_output = gr.Textbox(
label=label,
interactive=False,
placeholder=placeholder,
lines=lines,
elem_classes=["custom-output"],
)
self.components[f"text_output_{label}"] = text_output
return text_output
def create_tab(self, label, content_function):
with gr.Tab(label):
content_function(self)
def set_event_listener(self, button, function, inputs, outputs):
button.click(function, inputs=inputs, outputs=outputs)
def get_components(self, *keys):
if not keys:
return self.components # return all components
return [self.components[key] for key in keys]
def create_json_output(self, label, placeholder=""):
json_output = gr.JSON(
label=label,
value={},
elem_classes=["custom-output"],
)
self.components[f"json_output_{label}"] = json_output
return json_output
def build(self):
return self.blocks
def create_conditional_input(
self, component, visible_when, watch_component
):
"""Create an input that's only visible under certain conditions"""
watch_component.change(
fn=lambda x: gr.update(visible=visible_when(x)),
inputs=[watch_component],
outputs=[component],
)
@staticmethod
def create_ui_theme(primary_color="red"):
return gr.themes.Ocean(
primary_hue=primary_color,
secondary_hue=primary_color,
neutral_hue="gray",
).set(
body_background_fill="#20252c",
body_text_color="#f0f0f0",
button_primary_background_fill=primary_color,
button_primary_text_color="#ffffff",
button_secondary_background_fill=primary_color,
button_secondary_text_color="#ffffff",
shadow_drop="0px 2px 4px rgba(0, 0, 0, 0.3)",
)
def create_agent_details_tab(self):
"""Create the agent details tab content."""
with gr.Column():
gr.Markdown("### Agent Details")
gr.Markdown(
"""
**Available Agent Types:**
- Data Extraction Agent: Specialized in extracting relevant information
- Summary Agent - Analysis Agent: Performs detailed analysis of data
**Swarm Types:**
- ConcurrentWorkflow: Agents work in parallel
- SequentialWorkflow: Agents work in sequence
- AgentRearrange: Custom agent execution flow
- MixtureOfAgents: Combines multiple agents with an aggregator
- SpreadSheetSwarm: Specialized for spreadsheet operations
- Auto: Automatically determines optimal workflow
**Note:**
Spreasheet swarm saves data in csv, will work in local setup !
"""
)
return gr.Column()
def create_logs_tab(self):
"""Create the logs tab content."""
with gr.Column():
gr.Markdown("### Execution Logs")
logs_display = gr.Textbox(
label="System Logs",
placeholder="Execution logs will appear here...",
interactive=False,
lines=10,
)
return logs_display
def update_flow_agents(agent_keys):
"""Update flow agents based on selected agent prompts."""
if not agent_keys:
return [], "No agents selected"
agent_names = [key for key in agent_keys]
print(f"Flow agents: {agent_names}") # Debug: Print flow agents
return agent_names, "Select agents in execution order"
def update_flow_preview(selected_flow_agents):
"""Update flow preview based on selected agents."""
if not selected_flow_agents:
return "Flow will be shown here..."
flow = " -> ".join(selected_flow_agents)
return flow
def create_app():
# Initialize UI
theme = UI.create_ui_theme(primary_color="red")
ui = UI(theme=theme)
global AGENT_PROMPTS
# Available providers and models
providers = [
"openai",
"anthropic",
"cohere",
"gemini",
"mistral",
"groq",
"perplexity",
]
filtered_models = {}
for provider in providers:
filtered_models[provider] = models_by_provider.get(provider, [])
with ui.blocks:
with gr.Row():
with gr.Column(scale=4): # Left column (80% width)
ui.create_markdown("Swarms", is_header=True)
ui.create_markdown(
"<b>The Enterprise-Grade Production-Ready Multi-Agent"
" Orchestration Framework</b>"
)
with gr.Row():
with gr.Column(scale=4):
with gr.Row():
task_input = gr.Textbox(
label="Task Description",
placeholder="Describe your task here...",
lines=3,
)
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
# Provider selection dropdown
provider_dropdown = gr.Dropdown(
label="Select Provider",
choices=providers,
value=providers[0]
if providers
else None,
interactive=True,
)
# with gr.Row():
# # Model selection dropdown (initially empty)
model_dropdown = gr.Dropdown(
label="Select Model",
choices=[],
interactive=True,
)
with gr.Row():
# API key input
api_key_input = gr.Textbox(
label="API Key",
placeholder="Enter your API key",
type="password",
)
with gr.Column(scale=1):
with gr.Row():
dynamic_slider = gr.Slider(
label="Dyn. Temp",
minimum=0,
maximum=1,
value=0.1,
step=0.01,
)
# with gr.Row():
# max tokens slider
max_loops_slider = gr.Slider(
label="Max Loops",
minimum=1,
maximum=10,
value=1,
step=1,
)
with gr.Row():
# max tokens slider
max_tokens_slider = gr.Slider(
label="Max Tokens",
minimum=100,
maximum=10000,
value=4000,
step=100,
)
with gr.Column(scale=2, min_width=200):
with gr.Column(scale=1):
# Get available agent prompts
available_prompts = (
list(AGENT_PROMPTS.keys())
if AGENT_PROMPTS
else ["No agents available"]
)
agent_prompt_selector = gr.Dropdown(
label="Select Agent Prompts",
choices=available_prompts,
value=[available_prompts[0]]
if available_prompts
else None,
multiselect=True,
interactive=True,
)
# with gr.Column(scale=1):
# Get available swarm types
swarm_types = [
"SequentialWorkflow",
"ConcurrentWorkflow",
"AgentRearrange",
"MixtureOfAgents",
"SpreadSheetSwarm",
"auto",
]
agent_selector = gr.Dropdown(
label="Select Swarm",
choices=swarm_types,
value=swarm_types[0],
multiselect=False,
interactive=True,
)
# Flow configuration components for AgentRearrange
with gr.Column(visible=False) as flow_config:
flow_text = gr.Textbox(
label="Agent Flow Configuration",
placeholder="Enter agent flow !",
lines=2,
)
gr.Markdown(
"""
**Flow Configuration Help:**
- Enter agent names separated by ' -> '
- Example: Agent1 -> Agent2 -> Agent3
- Use exact agent names from the prompts above
"""
)
# Create Agent Prompt Section
with gr.Accordion(
"Create Agent Prompt", open=False
) as create_prompt_accordion:
with gr.Row():
with gr.Column():
new_agent_name_input = gr.Textbox(
label="New Agent Name"
)
with gr.Column():
new_agent_prompt_input = (
gr.Textbox(
label="New Agent Prompt",
lines=3,
)
)
with gr.Row():
with gr.Column():
create_agent_button = gr.Button(
"Save New Prompt"
)
with gr.Column():
create_agent_status = gr.Textbox(
label="Status",
interactive=False,
)
# with gr.Row():
# temperature_slider = gr.Slider(
# label="Temperature",
# minimum=0,
# maximum=1,
# value=0.1,
# step=0.01
# )
# Hidden textbox to store API Key
env_api_key_textbox = gr.Textbox(
value="", visible=False
)
with gr.Row():
with gr.Column(scale=1):
run_button = gr.Button(
"Run Task", variant="primary"
)
cancel_button = gr.Button(
"Cancel", variant="secondary"
)
with gr.Column(scale=1):
with gr.Row():
loading_status = gr.Textbox(
label="Status",
value="Ready",
interactive=False,
)
# Add loading indicator and status
with gr.Row():
agent_output_display = gr.Textbox(
label="Agent Responses",
placeholder="Responses will appear here...",
interactive=False,
lines=10,
)
with gr.Row():
log_display = gr.Textbox(
label="Logs",
placeholder="Logs will be displayed here...",
interactive=False,
lines=5,
visible=False,
)
error_display = gr.Textbox(
label="Error",
placeholder="Errors will be displayed here...",
interactive=False,
lines=5,
visible=False,
)
def update_agent_dropdown():
"""Update agent dropdown when a new agent is added"""
global AGENT_PROMPTS
AGENT_PROMPTS = load_prompts_from_json()
available_prompts = (
list(AGENT_PROMPTS.keys())
if AGENT_PROMPTS
else ["No agents available"]
)
return gr.update(
choices=available_prompts,
value=available_prompts[0]
if available_prompts
else None,
)
def update_ui_for_swarm_type(swarm_type):
"""Update UI components based on selected swarm type."""
is_agent_rearrange = swarm_type == "AgentRearrange"
is_mixture = swarm_type == "MixtureOfAgents"
is_spreadsheet = swarm_type == "SpreadSheetSwarm"
max_loops = (
5 if is_mixture or is_spreadsheet else 10
)
# Return visibility state for flow configuration and max loops update
return (
gr.update(visible=is_agent_rearrange), # For flow_config
gr.update(
maximum=max_loops
), # For max_loops_slider
f"Selected {swarm_type}", # For loading_status
)
def update_model_dropdown(provider):
"""Update model dropdown based on selected provider."""
models = filtered_models.get(provider, [])
return gr.update(
choices=models,
value=models[0] if models else None,
)
def save_new_agent_prompt(agent_name, agent_prompt):
"""Saves a new agent prompt to the JSON file."""
try:
if not agent_name or not agent_prompt:
return (
"Error: Agent name and prompt cannot be"
" empty."
)
if (
not agent_name.isalnum()
and "_" not in agent_name
):
return (
"Error : Agent name must be alphanumeric or"
" underscore(_) "
)
if "agent." + agent_name in AGENT_PROMPTS:
return "Error : Agent name already exists"
with open(
PROMPT_JSON_PATH, "r+", encoding="utf-8"
) as f:
try:
data = json.load(f)
except json.JSONDecodeError:
data = {}
data[agent_name] = {
"system_prompt": agent_prompt
}
f.seek(0)
json.dump(data, f, indent=4)
f.truncate()
return "New agent prompt saved successfully"
except Exception as e:
return f"Error saving agent prompt {str(e)}"
# In the run_task_wrapper function, modify the API key handling
async def run_task_wrapper(
task,
max_loops,
dynamic_temp,
swarm_type,
agent_prompt_selector,
flow_text,
provider,
model_name,
api_key,
temperature,
max_tokens,
):
"""Execute the task and update the UI with progress."""
try:
# Update status
yield "Processing...", "Running task...", "", gr.update(visible=False), gr.update(visible=False)
# Prepare flow for AgentRearrange
flow = None
if swarm_type == "AgentRearrange":
if not flow_text:
yield (
"Please provide the agent flow"
" configuration.",
"Error: Flow not configured",
"",
gr.update(visible=True),
gr.update(visible=False)
)
return
flow = flow_text
print(
f"Flow string: {flow}"
) # Debug: Print flow string
# save api keys in memory
api_keys[provider] = api_key
agents = initialize_agents(
dynamic_temp,
agent_prompt_selector,
model_name,
provider,
api_keys.get(provider), # Access API key from the dictionary
temperature,
max_tokens,
)
print(
"Agents passed to SwarmRouter:"
f" {[agent.agent_name for agent in agents]}"
) # Debug: Print agent list
# Convert agent list to dictionary
agents_dict = {
agent.agent_name: agent for agent in agents
}
# Execute task
async for result, router, error in execute_task(
task=task,
max_loops=max_loops,
dynamic_temp=dynamic_temp,
swarm_type=swarm_type,
agent_keys=agent_prompt_selector,
flow=flow,
model_name=model_name,
provider=provider,
api_key=api_keys.get(provider), # Pass the api key from memory
temperature=temperature,
max_tokens=max_tokens,
agents=agents_dict, # Changed here
log_display=log_display,
error_display = error_display
):
if error:
yield f"Error: {error}", f"Error: {error}", "", gr.update(visible=True), gr.update(visible=True)
return
if result is not None:
formatted_output = format_output(result, swarm_type, error_display)
yield formatted_output, "Completed", api_key, gr.update(visible=False), gr.update(visible=False)
return
except Exception as e:
yield f"Error: {str(e)}", f"Error: {str(e)}", "", gr.update(visible=True), gr.update(visible=True)
return
# Connect the update functions
agent_selector.change(
fn=update_ui_for_swarm_type,
inputs=[agent_selector],
outputs=[
flow_config,
max_loops_slider,
loading_status,
],
)
provider_dropdown.change(
fn=update_model_dropdown,
inputs=[provider_dropdown],
outputs=[model_dropdown],
)
# Event for creating new agent prompts
create_agent_button.click(
fn=save_new_agent_prompt,
inputs=[new_agent_name_input, new_agent_prompt_input],
outputs=[create_agent_status],
).then(
fn=update_agent_dropdown,
inputs=None,
outputs=[agent_prompt_selector],
)
# Create event trigger
# Create event trigger for run button
run_event = run_button.click(
fn=run_task_wrapper,
inputs=[
task_input,
max_loops_slider,
dynamic_slider,
agent_selector,
agent_prompt_selector,
flow_text,
provider_dropdown,
model_dropdown,
api_key_input,
max_tokens_slider
],
outputs=[
agent_output_display,
loading_status,
env_api_key_textbox,
error_display,
log_display,
],
)
# Connect cancel button to interrupt processing
def cancel_task():
return "Task cancelled.", "Cancelled", "", gr.update(visible=False), gr.update(visible=False)
cancel_button.click(
fn=cancel_task,
inputs=None,
outputs=[
agent_output_display,
loading_status,
env_api_key_textbox,
error_display,
log_display
],
cancels=run_event,
)
with gr.Column(scale=1): # Right column
with gr.Tabs():
with gr.Tab("Agent Details"):
ui.create_agent_details_tab()
with gr.Tab("Logs"):
logs_display = ui.create_logs_tab()
def update_logs_display():
"""Update logs display with current logs."""
return ""
# Update logs when tab is selected
logs_tab = gr.Tab("Logs")
logs_tab.select(
fn=update_logs_display,
inputs=None,
outputs=[logs_display],
)
return ui.build()
# if __name__ == "__main__":
# app = create_app()
# app.launch() |