File size: 13,382 Bytes
d8d14f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import asyncio
import math
from typing import List, Union

from pydantic import BaseModel

from swarms.structs.agent import Agent
from swarms.structs.omni_agent_types import AgentListType
from swarms.utils.loguru_logger import initialize_logger

logger = initialize_logger(log_folder="swarming_architectures")


# Define Pydantic schema for logging agent responses
class AgentLog(BaseModel):
    agent_name: str
    task: str
    response: str


class Conversation(BaseModel):
    logs: List[AgentLog] = []

    def add_log(
        self, agent_name: str, task: str, response: str
    ) -> None:
        log_entry = AgentLog(
            agent_name=agent_name, task=task, response=response
        )
        self.logs.append(log_entry)
        logger.info(
            f"Agent: {agent_name} | Task: {task} | Response: {response}"
        )

    def return_history(self) -> dict:
        return {
            "history": [
                {
                    "agent_name": log.agent_name,
                    "task": log.task,
                    "response": log.response,
                }
                for log in self.logs
            ]
        }


def circular_swarm(
    agents: AgentListType,
    tasks: List[str],
    return_full_history: bool = True,
) -> Union[dict, List[str]]:
    """
    Implements a circular swarm where agents pass tasks in a circular manner.

    Args:
    - agents (AgentListType): A list of Agent objects to participate in the swarm.
    - tasks (List[str]): A list of tasks to be processed by the agents.
    - return_full_history (bool, optional): If True, returns the full conversation history. Defaults to True.

    Returns:
    - Union[dict, List[str]]: If return_full_history is True, returns a dictionary containing the conversation history. Otherwise, returns a list of responses.
    """
    # Ensure agents is a flat list of Agent objects
    flat_agents = (
        [agent for sublist in agents for agent in sublist]
        if isinstance(agents[0], list)
        else agents
    )

    if not flat_agents or not tasks:
        raise ValueError("Agents and tasks lists cannot be empty.")

    conversation = Conversation()
    responses = []

    for task in tasks:
        for agent in flat_agents:
            response = agent.run(task)
            conversation.add_log(
                agent_name=agent.agent_name,
                task=task,
                response=response,
            )
            responses.append(response)

    if return_full_history:
        return conversation.return_history()
    else:
        return responses


def grid_swarm(agents: AgentListType, tasks: List[str]):
    grid_size = int(
        len(agents) ** 0.5
    )  # Assuming agents can form a perfect square grid
    for i in range(grid_size):
        for j in range(grid_size):
            if tasks:
                task = tasks.pop(0)
                agents[i * grid_size + j].run(task)


# Linear Swarm: Agents process tasks in a sequential linear manner
def linear_swarm(
    agents: AgentListType,
    tasks: List[str],
    return_full_history: bool = True,
) -> Union[str, List[str]]:
    if not agents or not tasks:
        raise ValueError("Agents and tasks lists cannot be empty.")

    conversation = Conversation()
    responses = []

    for agent in agents:
        if tasks:
            task = tasks.pop(0)
            response = agent.run(task)
            conversation.add_log(
                agent_name=agent.agent_name,
                task=task,
                response=response,
            )
            responses.append(response)

    return (
        conversation.return_history()
        if return_full_history
        else responses
    )


# Star Swarm: A central agent first processes all tasks, followed by others
def star_swarm(
    agents: AgentListType,
    tasks: List[str],
    return_full_history: bool = True,
) -> Union[str, List[str]]:
    if not agents or not tasks:
        raise ValueError("Agents and tasks lists cannot be empty.")

    conversation = Conversation()
    center_agent = agents[0]  # The central agent
    responses = []

    for task in tasks:
        # Central agent processes the task
        center_response = center_agent.run(task)
        conversation.add_log(
            agent_name=center_agent.agent_name,
            task=task,
            response=center_response,
        )
        responses.append(center_response)

        # Other agents process the same task
        for agent in agents[1:]:
            response = agent.run(task)
            conversation.add_log(
                agent_name=agent.agent_name,
                task=task,
                response=response,
            )
            responses.append(response)

    return (
        conversation.return_history()
        if return_full_history
        else responses
    )


# Mesh Swarm: Agents work on tasks randomly from a task queue until all tasks are processed
def mesh_swarm(
    agents: AgentListType,
    tasks: List[str],
    return_full_history: bool = True,
) -> Union[str, List[str]]:
    if not agents or not tasks:
        raise ValueError("Agents and tasks lists cannot be empty.")

    conversation = Conversation()
    task_queue = tasks.copy()
    responses = []

    while task_queue:
        for agent in agents:
            if task_queue:
                task = task_queue.pop(0)
                response = agent.run(task)
                conversation.add_log(
                    agent_name=agent.agent_name,
                    task=task,
                    response=response,
                )
                responses.append(response)

    return (
        conversation.return_history()
        if return_full_history
        else responses
    )


# Pyramid Swarm: Agents are arranged in a pyramid structure
def pyramid_swarm(
    agents: AgentListType,
    tasks: List[str],
    return_full_history: bool = True,
) -> Union[str, List[str]]:
    if not agents or not tasks:
        raise ValueError("Agents and tasks lists cannot be empty.")

    conversation = Conversation()
    responses = []

    levels = int(
        (-1 + (1 + 8 * len(agents)) ** 0.5) / 2
    )  # Number of levels in the pyramid

    for i in range(levels):
        for j in range(i + 1):
            if tasks:
                task = tasks.pop(0)
                agent_index = int(i * (i + 1) / 2 + j)
                response = agents[agent_index].run(task)
                conversation.add_log(
                    agent_name=agents[agent_index].agent_name,
                    task=task,
                    response=response,
                )
                responses.append(response)

    return (
        conversation.return_history()
        if return_full_history
        else responses
    )


def fibonacci_swarm(agents: AgentListType, tasks: List[str]):
    fib = [1, 1]
    while len(fib) < len(agents):
        fib.append(fib[-1] + fib[-2])
    for i in range(len(fib)):
        for j in range(fib[i]):
            if tasks:
                task = tasks.pop(0)
                agents[int(sum(fib[:i]) + j)].run(task)


def prime_swarm(agents: AgentListType, tasks: List[str]):
    primes = [
        2,
        3,
        5,
        7,
        11,
        13,
        17,
        19,
        23,
        29,
        31,
        37,
        41,
        43,
        47,
        53,
        59,
        61,
        67,
        71,
        73,
        79,
        83,
        89,
        97,
    ]  # First 25 prime numbers
    for prime in primes:
        if prime < len(agents) and tasks:
            task = tasks.pop(0)
            agents[prime].run(task)


def power_swarm(agents: List[str], tasks: List[str]):
    powers = [2**i for i in range(int(len(agents) ** 0.5))]
    for power in powers:
        if power < len(agents) and tasks:
            task = tasks.pop(0)
            agents[power].run(task)


def log_swarm(agents: AgentListType, tasks: List[str]):
    for i in range(len(agents)):
        if 2**i < len(agents) and tasks:
            task = tasks.pop(0)
            agents[2**i].run(task)


def exponential_swarm(agents: AgentListType, tasks: List[str]):
    for i in range(len(agents)):
        index = min(int(2**i), len(agents) - 1)
        if tasks:
            task = tasks.pop(0)
            agents[index].run(task)


def geometric_swarm(agents, tasks):
    ratio = 2
    for i in range(range(len(agents))):
        index = min(int(ratio**2), len(agents) - 1)
        if tasks:
            task = tasks.pop(0)
            agents[index].run(task)


def harmonic_swarm(agents: AgentListType, tasks: List[str]):
    for i in range(1, len(agents) + 1):
        index = min(int(len(agents) / i), len(agents) - 1)
        if tasks:
            task = tasks.pop(0)
            agents[index].run(task)


def staircase_swarm(agents: AgentListType, task: str):
    step = len(agents) // 5
    for i in range(len(agents)):
        index = (i // step) * step
        agents[index].run(task)


def sigmoid_swarm(agents: AgentListType, task: str):
    for i in range(len(agents)):
        index = int(len(agents) / (1 + math.exp(-i)))
        agents[index].run(task)


def sinusoidal_swarm(agents: AgentListType, task: str):
    for i in range(len(agents)):
        index = int((math.sin(i) + 1) / 2 * len(agents))
        agents[index].run(task)


async def one_to_three(
    sender: Agent, agents: AgentListType, task: str
):
    """
    Sends a message from the sender agent to three other agents.

    Args:
        sender (Agent): The agent sending the message.
        agents (AgentListType): The list of agents to receive the message.
        task (str): The message to be sent.

    Raises:
        Exception: If there is an error while sending the message.

    Returns:
        None
    """
    if len(agents) != 3:
        raise ValueError("The number of agents must be exactly 3.")

    if not task:
        raise ValueError("The task cannot be empty.")

    if not sender:
        raise ValueError("The sender cannot be empty.")

    try:
        receive_tasks = []
        for agent in agents:
            receive_tasks.append(
                agent.receive_message(sender.agent_name, task)
            )

        await asyncio.gather(*receive_tasks)
    except Exception as error:
        logger.error(
            f"[ERROR][CLASS: Agent][METHOD: one_to_three] {error}"
        )
        raise error


"""
This module contains functions for facilitating communication between agents in a swarm. It includes methods for one-to-one communication, broadcasting, and other swarm architectures.
"""


# One-to-One Communication between two agents
def one_to_one(
    sender: Agent, receiver: Agent, task: str, max_loops: int = 1
) -> str:
    """
    Facilitates one-to-one communication between two agents. The sender and receiver agents exchange messages for a specified number of loops.

    Args:
        sender (Agent): The agent sending the message.
        receiver (Agent): The agent receiving the message.
        task (str): The message to be sent.
        max_loops (int, optional): The number of times the sender and receiver exchange messages. Defaults to 1.

    Returns:
        str: The conversation history between the sender and receiver.

    Raises:
        Exception: If there is an error during the communication process.
    """
    conversation = Conversation()
    responses = []

    try:
        for _ in range(max_loops):
            # Sender processes the task
            sender_response = sender.run(task)
            conversation.add_log(
                agent_name=sender.agent_name,
                task=task,
                response=sender_response,
            )
            responses.append(sender_response)

            # Receiver processes the result of the sender
            receiver_response = receiver.run(sender_response)
            conversation.add_log(
                agent_name=receiver.agent_name,
                task=task,
                response=receiver_response,
            )
            responses.append(receiver_response)

    except Exception as error:
        logger.error(
            f"Error during one_to_one communication: {error}"
        )
        raise error

    return conversation.return_history()


# Broadcasting: A message from one agent to many
async def broadcast(
    sender: Agent, agents: AgentListType, task: str
) -> None:
    """
    Facilitates broadcasting of a message from one agent to multiple agents.

    Args:
        sender (Agent): The agent sending the message.
        agents (AgentListType): The list of agents to receive the message.
        task (str): The message to be sent.

    Raises:
        ValueError: If the sender, agents, or task is empty.
        Exception: If there is an error during the broadcasting process.
    """
    conversation = Conversation()

    if not sender or not agents or not task:
        raise ValueError("Sender, agents, and task cannot be empty.")

    try:
        receive_tasks = []
        for agent in agents:
            receive_tasks.append(agent.run(task))
            conversation.add_log(
                agent_name=agent.agent_name, task=task, response=task
            )

        await asyncio.gather(*receive_tasks)
    except Exception as error:
        logger.error(f"Error during broadcast: {error}")
        raise error