File size: 23,538 Bytes
d8d14f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
import json
from typing import List, Optional, Tuple

import numpy as np
from pydantic import BaseModel, Field
from tenacity import retry, stop_after_attempt, wait_exponential

from swarms.utils.auto_download_check_packages import (
    auto_check_and_download_package,
)
from swarms.utils.lazy_loader import lazy_import_decorator
from swarms.utils.loguru_logger import initialize_logger

logger = initialize_logger(log_folder="swarm_matcher")


class SwarmType(BaseModel):
    name: str
    description: str
    embedding: Optional[List[float]] = Field(
        default=None, exclude=True
    )


class SwarmMatcherConfig(BaseModel):
    model_name: str = "sentence-transformers/all-MiniLM-L6-v2"
    embedding_dim: int = (
        512  # Dimension of the sentence-transformers model
    )


@lazy_import_decorator
class SwarmMatcher:
    """
    A class for matching tasks to swarm types based on their descriptions.
    It utilizes a transformer model to generate embeddings for task and swarm type descriptions,
    and then calculates the dot product to find the best match.
    """

    def __init__(self, config: SwarmMatcherConfig):
        """
        Initializes the SwarmMatcher with a configuration.

        Args:
            config (SwarmMatcherConfig): The configuration for the SwarmMatcher.
        """
        logger.add("swarm_matcher_debug.log", level="DEBUG")
        logger.debug("Initializing SwarmMatcher")

        try:
            import torch
        except ImportError:
            auto_check_and_download_package(
                "torch", package_manager="pip", upgrade=True
            )
            import torch

        try:
            import transformers
        except ImportError:
            auto_check_and_download_package(
                "transformers", package_manager="pip", upgrade=True
            )
            import transformers

        self.torch = torch
        try:
            self.config = config
            self.tokenizer = (
                transformers.AutoTokenizer.from_pretrained(
                    config.model_name
                )
            )
            self.model = transformers.AutoModel.from_pretrained(
                config.model_name
            )
            self.swarm_types: List[SwarmType] = []
            logger.debug("SwarmMatcher initialized successfully")
        except Exception as e:
            logger.error(f"Error initializing SwarmMatcher: {str(e)}")
            raise

    @retry(
        stop=stop_after_attempt(3),
        wait=wait_exponential(multiplier=1, min=4, max=10),
    )
    def get_embedding(self, text: str) -> np.ndarray:
        """
        Generates an embedding for a given text using the configured model.

        Args:
            text (str): The text for which to generate an embedding.

        Returns:
            np.ndarray: The embedding vector for the text.
        """
        logger.debug(f"Getting embedding for text: {text[:50]}...")
        try:
            inputs = self.tokenizer(
                text,
                return_tensors="pt",
                padding=True,
                truncation=True,
                max_length=512,
            )
            with self.torch.no_grad():
                outputs = self.model(**inputs)
            embedding = (
                outputs.last_hidden_state.mean(dim=1)
                .squeeze()
                .numpy()
            )
            logger.debug("Embedding generated successfully")
            return embedding
        except Exception as e:
            logger.error(f"Error generating embedding: {str(e)}")
            raise

    def add_swarm_type(self, swarm_type: SwarmType):
        """
        Adds a swarm type to the list of swarm types, generating an embedding for its description.

        Args:
            swarm_type (SwarmType): The swarm type to add.
        """
        logger.debug(f"Adding swarm type: {swarm_type.name}")
        try:
            embedding = self.get_embedding(swarm_type.description)
            swarm_type.embedding = embedding.tolist()
            self.swarm_types.append(swarm_type)
            logger.info(f"Added swarm type: {swarm_type.name}")
        except Exception as e:
            logger.error(
                f"Error adding swarm type {swarm_type.name}: {str(e)}"
            )
            raise

    def find_best_match(self, task: str) -> Tuple[str, float]:
        """
        Finds the best match for a given task among the registered swarm types.

        Args:
            task (str): The task for which to find the best match.

        Returns:
            Tuple[str, float]: A tuple containing the name of the best matching swarm type and the score.
        """
        logger.debug(f"Finding best match for task: {task[:50]}...")
        try:
            task_embedding = self.get_embedding(task)
            best_match = None
            best_score = -float("inf")
            for swarm_type in self.swarm_types:
                score = np.dot(
                    task_embedding, np.array(swarm_type.embedding)
                )
                if score > best_score:
                    best_score = score
                    best_match = swarm_type
            logger.info(
                f"Best match for task: {best_match.name} (score: {best_score})"
            )
            return best_match.name, float(best_score)
        except Exception as e:
            logger.error(
                f"Error finding best match for task: {str(e)}"
            )
            raise

    def auto_select_swarm(self, task: str) -> str:
        """
        Automatically selects the best swarm type for a given task based on their descriptions.

        Args:
            task (str): The task for which to select a swarm type.

        Returns:
            str: The name of the selected swarm type.
        """
        logger.debug(f"Auto-selecting swarm for task: {task[:50]}...")
        best_match, score = self.find_best_match(task)
        logger.info(f"Task: {task}")
        logger.info(f"Selected Swarm Type: {best_match}")
        logger.info(f"Confidence Score: {score:.2f}")
        return best_match

    def run_multiple(self, tasks: List[str], *args, **kwargs) -> str:
        swarms = []

        for task in tasks:
            output = self.auto_select_swarm(task)

            # Append
            swarms.append(output)

        return swarms

    def save_swarm_types(self, filename: str):
        """
        Saves the registered swarm types to a JSON file.

        Args:
            filename (str): The name of the file to which to save the swarm types.
        """
        try:
            with open(filename, "w") as f:
                json.dump([st.dict() for st in self.swarm_types], f)
            logger.info(f"Saved swarm types to {filename}")
        except Exception as e:
            logger.error(f"Error saving swarm types: {str(e)}")
            raise

    def load_swarm_types(self, filename: str):
        """
        Loads swarm types from a JSON file.

        Args:
            filename (str): The name of the file from which to load the swarm types.
        """
        try:
            with open(filename, "r") as f:
                swarm_types_data = json.load(f)
            self.swarm_types = [
                SwarmType(**st) for st in swarm_types_data
            ]
            logger.info(f"Loaded swarm types from {filename}")
        except Exception as e:
            logger.error(f"Error loading swarm types: {str(e)}")
            raise


def initialize_swarm_types(matcher: SwarmMatcher):
    logger.debug("Initializing swarm types")
    swarm_types = [
        SwarmType(
            name="AgentRearrange",
            description="Optimize agent order and rearrange flow for multi-step tasks, ensuring efficient task allocation and minimizing bottlenecks. Keywords: orchestration, coordination, pipeline optimization, task scheduling, resource allocation, workflow management, agent organization, process optimization",
        ),
        SwarmType(
            name="MixtureOfAgents",
            description="Combine diverse expert agents for comprehensive analysis, fostering a collaborative approach to problem-solving and leveraging individual strengths. Keywords: multi-agent system, expert collaboration, distributed intelligence, collective problem solving, agent specialization, team coordination, hybrid approaches, knowledge synthesis",
        ),
        SwarmType(
            name="SpreadSheetSwarm",
            description="Collaborative data processing and analysis in a spreadsheet-like environment, facilitating real-time data sharing and visualization. Keywords: data analysis, tabular processing, collaborative editing, data transformation, spreadsheet operations, data visualization, real-time collaboration, structured data",
        ),
        SwarmType(
            name="SequentialWorkflow",
            description="Execute tasks in a step-by-step, sequential process workflow, ensuring a logical and methodical approach to task execution. Keywords: linear processing, waterfall methodology, step-by-step execution, ordered tasks, sequential operations, process flow, systematic approach, staged execution",
        ),
        SwarmType(
            name="ConcurrentWorkflow",
            description="Process multiple tasks or data sources concurrently in parallel, maximizing productivity and reducing processing time. Keywords: parallel processing, multi-threading, asynchronous execution, distributed computing, concurrent operations, simultaneous tasks, parallel workflows, scalable processing",
        ),
        # SwarmType(
        #     name="HierarchicalSwarm",
        #     description="Organize agents in a hierarchical structure with clear reporting lines and delegation of responsibilities. Keywords: management hierarchy, organizational structure, delegation, supervision, chain of command, tiered organization, structured coordination",
        # ),
        # SwarmType(
        #     name="AdaptiveSwarm",
        #     description="Dynamically adjust agent behavior and swarm configuration based on task requirements and performance feedback. Keywords: dynamic adaptation, self-optimization, feedback loops, learning systems, flexible configuration, responsive behavior, adaptive algorithms",
        # ),
        # SwarmType(
        #     name="ConsensusSwarm",
        #     description="Achieve group decisions through consensus mechanisms and voting protocols among multiple agents. Keywords: group decision making, voting systems, collective intelligence, agreement protocols, democratic processes, collaborative decisions",
        # ),
    ]

    for swarm_type in swarm_types:
        matcher.add_swarm_type(swarm_type)
    logger.debug("Swarm types initialized")


@lazy_import_decorator
def swarm_matcher(task: str, *args, **kwargs):
    """
    Runs the SwarmMatcher example with predefined tasks and swarm types.
    """
    config = SwarmMatcherConfig()
    matcher = SwarmMatcher(config)
    initialize_swarm_types(matcher)

    # matcher.save_swarm_types(f"swarm_logs/{uuid4().hex}.json")

    swarm_type = matcher.auto_select_swarm(task)

    logger.info(f"{swarm_type}")

    return swarm_type


# from typing import List, Tuple, Dict
# from pydantic import BaseModel, Field
# from loguru import logger
# from uuid import uuid4
# import chromadb
# import json
# from tenacity import retry, stop_after_attempt, wait_exponential


# class SwarmType(BaseModel):
#     """A swarm type with its name, description and optional metadata"""

#     id: str = Field(default_factory=lambda: str(uuid4()))
#     name: str
#     description: str
#     metadata: Dict = Field(default_factory=dict)


# class SwarmMatcherConfig(BaseModel):
#     """Configuration for the SwarmMatcher"""

#     collection_name: str = "swarm_types"
#     distance_metric: str = "cosine"  # or "l2" or "ip"
#     embedding_function: str = (
#         "sentence-transformers/all-mpnet-base-v2"  # Better model than MiniLM
#     )
#     persist_directory: str = "./chroma_db"


# class SwarmMatcher:
#     """
#     An improved swarm matcher that uses ChromaDB for better vector similarity search.
#     Features:
#     - Persistent storage of embeddings
#     - Better vector similarity search with multiple distance metrics
#     - Improved embedding model
#     - Metadata filtering capabilities
#     - Batch operations support
#     """

#     def __init__(self, config: SwarmMatcherConfig):
#         """Initialize the improved swarm matcher"""
#         logger.add("swarm_matcher.log", rotation="100 MB")
#         self.config = config

#         # Initialize ChromaDB client with persistence
#         self.chroma_client = chromadb.Client()

#         # Get or create collection
#         try:
#             self.collection = self.chroma_client.get_collection(
#                 name=config.collection_name,
#             )
#         except ValueError:
#             self.collection = self.chroma_client.create_collection(
#                 name=config.collection_name,
#                 metadata={"hnsw:space": config.distance_metric},
#             )

#         logger.info(
#             f"Initialized SwarmMatcher with collection '{config.collection_name}'"
#         )

#     def add_swarm_type(self, swarm_type: SwarmType) -> None:
#         """Add a single swarm type to the collection"""
#         try:
#             self.collection.add(
#                 ids=[swarm_type.id],
#                 documents=[swarm_type.description],
#                 metadatas=[
#                     {"name": swarm_type.name, **swarm_type.metadata}
#                 ],
#             )
#             logger.info(f"Added swarm type: {swarm_type.name}")
#         except Exception as e:
#             logger.error(
#                 f"Error adding swarm type {swarm_type.name}: {str(e)}"
#             )
#             raise

#     def add_swarm_types(self, swarm_types: List[SwarmType]) -> None:
#         """Add multiple swarm types in batch"""
#         try:
#             self.collection.add(
#                 ids=[st.id for st in swarm_types],
#                 documents=[st.description for st in swarm_types],
#                 metadatas=[
#                     {"name": st.name, **st.metadata}
#                     for st in swarm_types
#                 ],
#             )
#             logger.info(f"Added {len(swarm_types)} swarm types")
#         except Exception as e:
#             logger.error(
#                 f"Error adding swarm types in batch: {str(e)}"
#             )
#             raise

#     @retry(
#         stop=stop_after_attempt(3),
#         wait=wait_exponential(multiplier=1, min=4, max=10),
#     )
#     def find_best_matches(
#         self,
#         task: str,
#         n_results: int = 3,
#         score_threshold: float = 0.7,
#     ) -> List[Tuple[str, float]]:
#         """
#         Find the best matching swarm types for a given task
#         Returns multiple matches with their scores
#         """
#         try:
#             results = self.collection.query(
#                 query_texts=[task],
#                 n_results=n_results,
#                 include=["metadatas", "distances"],
#             )

#             matches = []
#             for metadata, distance in zip(
#                 results["metadatas"][0], results["distances"][0]
#             ):
#                 # Convert distance to similarity score (1 - normalized_distance)
#                 score = 1 - (
#                     distance / 2
#                 )  # Normalize cosine distance to [0,1]
#                 if score >= score_threshold:
#                     matches.append((metadata["name"], score))

#             logger.info(f"Found {len(matches)} matches for task")
#             return matches

#         except Exception as e:
#             logger.error(f"Error finding matches for task: {str(e)}")
#             raise

#     def auto_select_swarm(self, task: str) -> str:
#         """
#         Automatically select the best swarm type for a task
#         Returns only the top match
#         """
#         matches = self.find_best_matches(task, n_results=1)
#         if not matches:
#             logger.warning("No suitable matches found for task")
#             return "SequentialWorkflow"  # Default fallback

#         best_match, score = matches[0]
#         logger.info(
#             f"Selected swarm type '{best_match}' with confidence {score:.3f}"
#         )
#         return best_match

#     def run_multiple(self, tasks: List[str]) -> List[str]:
#         """Process multiple tasks in batch"""
#         return [self.auto_select_swarm(task) for task in tasks]

#     def save_swarm_types(self, filename: str) -> None:
#         """Export swarm types to JSON"""
#         try:
#             all_data = self.collection.get(
#                 include=["metadatas", "documents"]
#             )
#             swarm_types = [
#                 SwarmType(
#                     id=id_,
#                     name=metadata["name"],
#                     description=document,
#                     metadata={
#                         k: v
#                         for k, v in metadata.items()
#                         if k != "name"
#                     },
#                 )
#                 for id_, metadata, document in zip(
#                     all_data["ids"],
#                     all_data["metadatas"],
#                     all_data["documents"],
#                 )
#             ]

#             with open(filename, "w") as f:
#                 json.dump(
#                     [st.dict() for st in swarm_types], f, indent=2
#                 )
#             logger.info(f"Saved swarm types to {filename}")
#         except Exception as e:
#             logger.error(f"Error saving swarm types: {str(e)}")
#             raise

#     def load_swarm_types(self, filename: str) -> None:
#         """Import swarm types from JSON"""
#         try:
#             with open(filename, "r") as f:
#                 swarm_types_data = json.load(f)
#             swarm_types = [SwarmType(**st) for st in swarm_types_data]
#             self.add_swarm_types(swarm_types)
#             logger.info(f"Loaded swarm types from {filename}")
#         except Exception as e:
#             logger.error(f"Error loading swarm types: {str(e)}")
#             raise


# def initialize_default_swarm_types(matcher: SwarmMatcher) -> None:
#     """Initialize the matcher with default swarm types"""
#     swarm_types = [
#         SwarmType(
#             name="AgentRearrange",
#             description="""
#             Optimize agent order and rearrange flow for multi-step tasks, ensuring efficient task allocation
#             and minimizing bottlenecks. Specialized in orchestration, coordination, pipeline optimization,
#             task scheduling, resource allocation, workflow management, agent organization, and process optimization.
#             Best for tasks requiring complex agent interactions and workflow optimization.
#             """,
#             metadata={
#                 "category": "optimization",
#                 "complexity": "high",
#             },
#         ),
#         SwarmType(
#             name="MixtureOfAgents",
#             description="""
#             Combine diverse expert agents for comprehensive analysis, fostering a collaborative approach
#             to problem-solving and leveraging individual strengths. Focuses on multi-agent systems,
#             expert collaboration, distributed intelligence, collective problem solving, agent specialization,
#             team coordination, hybrid approaches, and knowledge synthesis. Ideal for complex problems
#             requiring multiple areas of expertise.
#             """,
#             metadata={
#                 "category": "collaboration",
#                 "complexity": "high",
#             },
#         ),
#         SwarmType(
#             name="SpreadSheetSwarm",
#             description="""
#             Collaborative data processing and analysis in a spreadsheet-like environment, facilitating
#             real-time data sharing and visualization. Specializes in data analysis, tabular processing,
#             collaborative editing, data transformation, spreadsheet operations, data visualization,
#             real-time collaboration, and structured data handling. Perfect for data-intensive tasks
#             requiring structured analysis.
#             """,
#             metadata={
#                 "category": "data_processing",
#                 "complexity": "medium",
#             },
#         ),
#         SwarmType(
#             name="SequentialWorkflow",
#             description="""
#             Execute tasks in a step-by-step, sequential process workflow, ensuring a logical and methodical
#             approach to task execution. Focuses on linear processing, waterfall methodology, step-by-step
#             execution, ordered tasks, sequential operations, process flow, systematic approach, and staged
#             execution. Best for tasks requiring strict order and dependencies.
#             """,
#             metadata={"category": "workflow", "complexity": "low"},
#         ),
#         SwarmType(
#             name="ConcurrentWorkflow",
#             description="""
#             Process multiple tasks or data sources concurrently in parallel, maximizing productivity
#             and reducing processing time. Specializes in parallel processing, multi-threading,
#             asynchronous execution, distributed computing, concurrent operations, simultaneous tasks,
#             parallel workflows, and scalable processing. Ideal for independent tasks that can be
#             processed simultaneously.
#             """,
#             metadata={"category": "workflow", "complexity": "medium"},
#         ),
#     ]

#     matcher.add_swarm_types(swarm_types)
#     logger.info("Initialized default swarm types")


# def create_swarm_matcher(
#     persist_dir: str = "./chroma_db",
#     collection_name: str = "swarm_types",
# ) -> SwarmMatcher:
#     """Convenience function to create and initialize a swarm matcher"""
#     config = SwarmMatcherConfig(
#         persist_directory=persist_dir, collection_name=collection_name
#     )
#     matcher = SwarmMatcher(config)
#     initialize_default_swarm_types(matcher)
#     return matcher


# # Example usage
# def swarm_matcher(task: str) -> str:
#     # Create and initialize matcher
#     matcher = create_swarm_matcher()

#     swarm_type = matcher.auto_select_swarm(task)
#     print(f"Task: {task}\nSelected Swarm: {swarm_type}\n")

#     return swarm_type


# # # Example usage
# # if __name__ == "__main__":
# #     # Create and initialize matcher
# #     matcher = create_swarm_matcher()

# #     # Example tasks
# #     tasks = [
# #         "Analyze this spreadsheet of sales data and create visualizations",
# #         "Coordinate multiple AI agents to solve a complex problem",
# #         "Process these tasks one after another in a specific order",
# #         "Write multiple blog posts about the latest advancements in swarm intelligence all at once",
# #         "Write a blog post about the latest advancements in swarm intelligence",
# #     ]

# #     # Process tasks
# #     for task in tasks:
# #         swarm_type = matcher.auto_select_swarm(task)
# #         print(f"Task: {task}\nSelected Swarm: {swarm_type}\n")