File size: 7,730 Bytes
d8d14f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from typing import List, Callable

from swarms.structs.agent import Agent
from swarms.utils.loguru_logger import logger
from swarms.structs.base_swarm import BaseSwarm
from swarms.structs.conversation import Conversation


# def select_next_speaker_bid(
#     step: int,
#     agents: List[Agent],
# ) -> int:
#     """Selects the next speaker."""
#     bids = []
#     for agent in agents:
#         bid = ask_for_bid(agent)
#         bids.append(bid)
#     max_value = max(bids)
#     max_indices = [i for i, x in enumerate(bids) if x == max_value]
#     idx = random.choice(max_indices)
#     return idx


def select_next_speaker_roundtable(
    step: int, agents: List[Agent]
) -> int:
    """Selects the next speaker."""
    return step % len(agents)


def select_next_speaker_director(
    step: int, agents: List[Agent], director: Agent
) -> int:
    # if the step if even => director
    # => director selects next speaker
    if step % 2 == 1:
        idx = 0
    else:
        idx = director.select_next_speaker() + 1
    return idx


def run_director(self, task: str):
    """Runs the multi-agent collaboration with a director."""
    n = 0
    self.reset()
    self.inject("Debate Moderator", task)
    print("(Debate Moderator): \n")

    while n < self.max_loops:
        name, message = self.step()
        print(f"({name}): {message}\n")
        n += 1


# [MAYBE]: Add type hints
class MultiAgentCollaboration(BaseSwarm):
    """
    Multi-agent collaboration class.

    Attributes:
        agents (List[Agent]): The agents in the collaboration.
        selection_function (callable): The function that selects the next speaker.
            Defaults to select_next_speaker.
        max_loops (int): The maximum number of iterations. Defaults to 10.
        autosave (bool): Whether to autosave the state of all agents. Defaults to True.
        saved_file_path_name (str): The path to the saved file. Defaults to
            "multi_agent_collab.json".
        stopping_token (str): The token that stops the collaboration. Defaults to
            "<DONE>".
        results (list): The results of the collaboration. Defaults to [].
        logger (logging.Logger): The logger. Defaults to logger.
        logging (bool): Whether to log the collaboration. Defaults to True.


    Methods:
        reset: Resets the state of all agents.
        inject: Injects a message into the collaboration.
        inject_agent: Injects an agent into the collaboration.
        step: Steps through the collaboration.
        ask_for_bid: Asks an agent for a bid.
        select_next_speaker: Selects the next speaker.
        run: Runs the collaboration.
        format_results: Formats the results of the run method.


    Usage:
    >>> from swarm_models import OpenAIChat
    >>> from swarms.structs import Agent
    >>> from swarms.swarms.multi_agent_collab import MultiAgentCollaboration
    >>>
    >>> # Initialize the language model
    >>> llm = OpenAIChat(
    >>>     temperature=0.5,
    >>> )
    >>>
    >>>
    >>> ## Initialize the workflow
    >>> agent = Agent(llm=llm, max_loops=1, dashboard=True)
    >>>
    >>> # Run the workflow on a task
    >>> out = agent.run("Generate a 10,000 word blog on health and wellness.")
    >>>
    >>> # Initialize the multi-agent collaboration
    >>> swarm = MultiAgentCollaboration(
    >>>     agents=[agent],
    >>>     max_loops=4,
    >>> )
    >>>
    >>> # Run the multi-agent collaboration
    >>> swarm.run()
    >>>
    >>> # Format the results of the multi-agent collaboration
    >>> swarm.format_results(swarm.results)

    """

    def __init__(
        self,
        name: str = "MultiAgentCollaboration",
        description: str = "A multi-agent collaboration.",
        director: Agent = None,
        agents: List[Agent] = None,
        select_next_speaker: Callable = None,
        max_loops: int = 10,
        autosave: bool = True,
        saved_file_path_name: str = "multi_agent_collab.json",
        stopping_token: str = "<DONE>",
        logging: bool = True,
        *args,
        **kwargs,
    ):
        super().__init__(
            name=name,
            description=description,
            agents=agents,
            *args,
            **kwargs,
        )
        self.name = name
        self.description = description
        self.director = director
        self.agents = agents
        self.select_next_speaker = select_next_speaker
        self._step = 0
        self.max_loops = max_loops
        self.autosave = autosave
        self.saved_file_path_name = saved_file_path_name
        self.stopping_token = stopping_token
        self.results = []
        self.logger = logger
        self.logging = logging

        # Conversation
        self.conversation = Conversation(
            time_enabled=True, *args, **kwargs
        )

    def default_select_next_speaker(
        self, step: int, agents: List[Agent]
    ) -> int:
        """Default speaker selection function."""
        return step % len(agents)

    def inject(self, name: str, message: str):
        """Injects a message into the multi-agent collaboration."""
        for agent in self.agents:
            self.conversation.add(name, message)
            agent.run(self.conversation.return_history_as_string())
        self._step += 1

    def step(self) -> str:
        """Steps through the multi-agent collaboration."""
        speaker_idx = self.select_next_speaker(
            self._step, self.agents
        )
        speaker = self.agents[speaker_idx]
        message = speaker.send()

        for receiver in self.agents:
            self.conversation.add(speaker.name, message)
            receiver.run(self.conversation.return_history_as_string())

        self._step += 1

        if self.logging:
            self.log_step(speaker, message)

        return self.conversation.return_history_as_string()

    def log_step(self, speaker: str, response: str):
        """Logs the step of the multi-agent collaboration."""
        self.logger.info(f"{speaker.name}: {response}")

    def run(self, task: str, *args, **kwargs):
        """Runs the multi-agent collaboration."""
        for _ in range(self.max_loops):
            result = self.step()
            if self.autosave:
                self.save_state()
            if self.stopping_token in result:
                break
        return self.conversation.return_history_as_string()

    # def format_results(self, results):
    #     """Formats the results of the run method"""
    #     formatted_results = "\n".join(
    #         [
    #             f"{result['agent']} responded: {result['response']}"
    #             for result in results
    #         ]
    #     )
    #     return formatted_results

    # def save(self):
    #     """Saves the state of all agents."""
    #     state = {
    #         "step": self._step,
    #         "results": [
    #             {"agent": r["agent"].name, "response": r["response"]}
    #             for r in self.results
    #         ],
    #     }

    #     with open(self.saved_file_path_name, "w") as file:
    #         json.dump(state, file)

    # def load(self):
    #     """Loads the state of all agents."""
    #     with open(self.saved_file_path_name) as file:
    #         state = json.load(file)
    #     self._step = state["step"]
    #     self.results = state["results"]
    #     return state

    # def __repr__(self):
    #     return (
    #         f"MultiAgentCollaboration(agents={self.agents},"
    #         f" selection_function={self.select_next_speaker},"
    #         f" max_loops={self.max_loops}, autosave={self.autosave},"
    #         f" saved_file_path_name={self.saved_file_path_name})"
    #     )