File size: 10,598 Bytes
d8d14f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import concurrent.futures
from datetime import datetime
from typing import Callable, List

from loguru import logger
from pydantic import BaseModel, Field

from swarms.structs.agent import Agent


class AgentResponse(BaseModel):
    agent_name: str
    role: str
    message: str
    timestamp: datetime = Field(default_factory=datetime.now)
    turn_number: int
    preceding_context: List[str] = Field(default_factory=list)


class ChatTurn(BaseModel):
    turn_number: int
    responses: List[AgentResponse]
    task: str
    timestamp: datetime = Field(default_factory=datetime.now)


class ChatHistory(BaseModel):
    turns: List[ChatTurn]
    total_messages: int
    name: str
    description: str
    start_time: datetime = Field(default_factory=datetime.now)


SpeakerFunction = Callable[[List[str], "Agent"], bool]


def round_robin(history: List[str], agent: Agent) -> bool:
    """
    Round robin speaker function.
    Each agent speaks in turn, in a circular order.
    """
    return True


def expertise_based(history: List[str], agent: Agent) -> bool:
    """
    Expertise based speaker function.
    An agent speaks if their system prompt is in the last message.
    """
    return (
        agent.system_prompt.lower() in history[-1].lower()
        if history
        else True
    )


def random_selection(history: List[str], agent: Agent) -> bool:
    """
    Random selection speaker function.
    An agent speaks randomly.
    """
    import random

    return random.choice([True, False])


def custom_speaker(history: List[str], agent: Agent) -> bool:
    """
    Custom speaker function with complex logic.

    Args:
        history: Previous conversation messages
        agent: Current agent being evaluated

    Returns:
        bool: Whether agent should speak
    """
    # No history - let everyone speak
    if not history:
        return True

    last_message = history[-1].lower()

    # Check for agent expertise keywords
    expertise_relevant = any(
        keyword in last_message
        for keyword in agent.description.lower().split()
    )

    # Check for direct mentions
    mentioned = agent.agent_name.lower() in last_message

    # Check if agent hasn't spoken recently
    not_recent_speaker = not any(
        agent.agent_name in msg for msg in history[-3:]
    )

    return expertise_relevant or mentioned or not_recent_speaker


def most_recent(history: List[str], agent: Agent) -> bool:
    """
    Most recent speaker function.
    An agent speaks if they are the last speaker.
    """
    return (
        agent.agent_name == history[-1].split(":")[0].strip()
        if history
        else True
    )


class GroupChat:
    """
    GroupChat class to enable multiple agents to communicate in a synchronous group chat.
    Each agent is aware of all other agents, every message exchanged, and the social context.
    """

    def __init__(
        self,
        name: str = "GroupChat",
        description: str = "A group chat for multiple agents",
        agents: List[Agent] = [],
        speaker_fn: SpeakerFunction = round_robin,
        max_turns: int = 10,
    ):
        """
        Initialize the GroupChat.

        Args:
            name (str): Name of the group chat.
            description (str): Description of the purpose of the group chat.
            agents (List[Agent]): A list of agents participating in the chat.
            speaker_fn (SpeakerFunction): The function to determine which agent should speak next.
            max_turns (int): Maximum number of turns in the chat.
        """
        self.name = name
        self.description = description
        self.agents = agents
        self.speaker_fn = speaker_fn
        self.max_turns = max_turns
        self.chat_history = ChatHistory(
            turns=[],
            total_messages=0,
            name=name,
            description=description,
        )

    def _get_response_sync(
        self, agent: Agent, prompt: str, turn_number: int
    ) -> AgentResponse:
        """
        Get the response from an agent synchronously.

        Args:
            agent (Agent): The agent responding.
            prompt (str): The message triggering the response.
            turn_number (int): The current turn number.

        Returns:
            AgentResponse: The agent's response captured in a structured format.
        """
        try:
            # Provide the agent with information about the chat and other agents
            chat_info = f"Chat Name: {self.name}\nChat Description: {self.description}\nAgents in Chat: {[a.agent_name for a in self.agents]}"
            context = f"""You are {agent.agent_name} 
                        Conversation History: 
                        \n{chat_info}
                        Other agents: {[a.agent_name for a in self.agents if a != agent]}
                        Previous messages: {self.get_full_chat_history()}
            """  # Updated line

            message = agent.run(context + prompt)
            return AgentResponse(
                agent_name=agent.name,
                role=agent.system_prompt,
                message=message,
                turn_number=turn_number,
                preceding_context=self.get_recent_messages(3),
            )
        except Exception as e:
            logger.error(f"Error from {agent.name}: {e}")
            return AgentResponse(
                agent_name=agent.name,
                role=agent.system_prompt,
                message=f"Error generating response: {str(e)}",
                turn_number=turn_number,
                preceding_context=[],
            )

    def get_full_chat_history(self) -> str:
        """
        Get the full chat history formatted for agent context.

        Returns:
            str: The full chat history with sender names.
        """
        messages = []
        for turn in self.chat_history.turns:
            for response in turn.responses:
                messages.append(
                    f"{response.agent_name}: {response.message}"
                )
        return "\n".join(messages)

    def get_recent_messages(self, n: int = 3) -> List[str]:
        """
        Get the most recent messages in the chat.

        Args:
            n (int): The number of recent messages to retrieve.

        Returns:
            List[str]: The most recent messages in the chat.
        """
        messages = []
        for turn in self.chat_history.turns[-n:]:
            for response in turn.responses:
                messages.append(
                    f"{response.agent_name}: {response.message}"
                )
        return messages

    def run(self, task: str) -> ChatHistory:
        """
        Run the group chat.

        Args:
            task (str): The initial message to start the chat.

        Returns:
            ChatHistory: The history of the chat.
        """
        try:
            logger.info(
                f"Starting chat '{self.name}' with task: {task}"
            )

            for turn in range(self.max_turns):
                current_turn = ChatTurn(
                    turn_number=turn, responses=[], task=task
                )

                for agent in self.agents:
                    if self.speaker_fn(
                        self.get_recent_messages(), agent
                    ):
                        response = self._get_response_sync(
                            agent, task, turn
                        )
                        current_turn.responses.append(response)
                        self.chat_history.total_messages += 1
                        logger.debug(
                            f"Turn {turn}, {agent.name} responded"
                        )

                self.chat_history.turns.append(current_turn)

            return self.chat_history
        except Exception as e:
            logger.error(f"Error in chat: {e}")
            raise e

    def batched_run(self, tasks: List[str], *args, **kwargs):
        """
        Run the group chat with a batch of tasks.

        Args:
            tasks (List[str]): The list of tasks to run in the chat.

        Returns:
            List[ChatHistory]: The history of each chat.
        """
        return [self.run(task, *args, **kwargs) for task in tasks]

    def concurrent_run(self, tasks: List[str], *args, **kwargs):
        """
        Run the group chat with a batch of tasks concurrently using a thread pool.

        Args:
            tasks (List[str]): The list of tasks to run in the chat.

        Returns:
            List[ChatHistory]: The history of each chat.
        """
        with concurrent.futures.ThreadPoolExecutor() as executor:
            return list(
                executor.map(
                    lambda task: self.run(task, *args, **kwargs),
                    tasks,
                )
            )


# if __name__ == "__main__":

#     load_dotenv()

#     # Get the OpenAI API key from the environment variable
#     api_key = os.getenv("OPENAI_API_KEY")

#     # Create an instance of the OpenAIChat class
#     model = OpenAIChat(
#         openai_api_key=api_key,
#         model_name="gpt-4o-mini",
#         temperature=0.1,
#     )

#     # Example agents
#     agent1 = Agent(
#         agent_name="Financial-Analysis-Agent",
#         system_prompt="You are a financial analyst specializing in investment strategies.",
#         llm=model,
#         max_loops=1,
#         autosave=False,
#         dashboard=False,
#         verbose=True,
#         dynamic_temperature_enabled=True,
#         user_name="swarms_corp",
#         retry_attempts=1,
#         context_length=200000,
#         output_type="string",
#         streaming_on=False,
#     )

#     agent2 = Agent(
#         agent_name="Tax-Adviser-Agent",
#         system_prompt="You are a tax adviser who provides clear and concise guidance on tax-related queries.",
#         llm=model,
#         max_loops=1,
#         autosave=False,
#         dashboard=False,
#         verbose=True,
#         dynamic_temperature_enabled=True,
#         user_name="swarms_corp",
#         retry_attempts=1,
#         context_length=200000,
#         output_type="string",
#         streaming_on=False,
#     )

#     agents = [agent1, agent2]

#     chat = GroupChat(
#         name="Investment Advisory",
#         description="Financial and tax analysis group",
#         agents=agents,
#         speaker_fn=expertise_based,
#     )

#     history = chat.run(
#         "How to optimize tax strategy for investments?"
#     )
#     print(history.model_dump_json(indent=2))