File size: 8,629 Bytes
d8d14f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
from enum import Enum
from typing import Any, Callable, Dict, List

import networkx as nx
from pydantic.v1 import BaseModel, Field, validator

from swarms.structs.agent import Agent  # noqa: F401
from swarms.utils.loguru_logger import initialize_logger

logger = initialize_logger(log_folder="graph_workflow")


class NodeType(str, Enum):
    AGENT: Agent = "agent"
    TASK: str = "task"


class Node(BaseModel):
    """
    Represents a node in a graph workflow.

    Attributes:
        id (str): The unique identifier of the node.
        type (NodeType): The type of the node.
        callable (Callable, optional): The callable associated with the node. Required for task nodes.
        agent (Any, optional): The agent associated with the node.

    Raises:
        ValueError: If the node type is TASK and no callable is provided.

    Examples:
        >>> node = Node(id="task1", type=NodeType.TASK, callable=sample_task)
        >>> node = Node(id="agent1", type=NodeType.AGENT, agent=agent1)
        >>> node = Node(id="agent2", type=NodeType.AGENT, agent=agent2)

    """

    id: str
    type: NodeType
    callable: Callable = None
    agent: Any = None

    @validator("callable", always=True)
    def validate_callable(cls, value, values):
        if values["type"] == NodeType.TASK and value is None:
            raise ValueError("Task nodes must have a callable.")
        return value


class Edge(BaseModel):
    source: str
    target: str


class GraphWorkflow(BaseModel):
    """
    Represents a workflow graph.

    Attributes:
        nodes (Dict[str, Node]): A dictionary of nodes in the graph, where the key is the node ID and the value is the Node object.
        edges (List[Edge]): A list of edges in the graph, where each edge is represented by an Edge object.
        entry_points (List[str]): A list of node IDs that serve as entry points to the graph.
        end_points (List[str]): A list of node IDs that serve as end points of the graph.
        graph (nx.DiGraph): A directed graph object from the NetworkX library representing the workflow graph.
    """

    nodes: Dict[str, Node] = Field(default_factory=dict)
    edges: List[Edge] = Field(default_factory=list)
    entry_points: List[str] = Field(default_factory=list)
    end_points: List[str] = Field(default_factory=list)
    graph: nx.DiGraph = Field(
        default_factory=nx.DiGraph, exclude=True
    )
    max_loops: int = 1

    class Config:
        arbitrary_types_allowed = True

    def add_node(self, node: Node):
        """
        Adds a node to the workflow graph.

        Args:
            node (Node): The node object to be added.

        Raises:
            ValueError: If a node with the same ID already exists in the graph.
        """
        try:
            if node.id in self.nodes:
                raise ValueError(
                    f"Node with id {node.id} already exists."
                )
            self.nodes[node.id] = node
            self.graph.add_node(
                node.id,
                type=node.type,
                callable=node.callable,
                agent=node.agent,
            )
        except Exception as e:
            logger.info(f"Error in adding node to the workflow: {e}")
            raise e

    def add_edge(self, edge: Edge):
        """
        Adds an edge to the workflow graph.

        Args:
            edge (Edge): The edge object to be added.

        Raises:
            ValueError: If either the source or target node of the edge does not exist in the graph.
        """
        if (
            edge.source not in self.nodes
            or edge.target not in self.nodes
        ):
            raise ValueError(
                "Both source and target nodes must exist before adding an edge."
            )
        self.edges.append(edge)
        self.graph.add_edge(edge.source, edge.target)

    def set_entry_points(self, entry_points: List[str]):
        """
        Sets the entry points of the workflow graph.

        Args:
            entry_points (List[str]): A list of node IDs to be set as entry points.

        Raises:
            ValueError: If any of the specified node IDs do not exist in the graph.
        """
        for node_id in entry_points:
            if node_id not in self.nodes:
                raise ValueError(
                    f"Node with id {node_id} does not exist."
                )
        self.entry_points = entry_points

    def set_end_points(self, end_points: List[str]):
        """
        Sets the end points of the workflow graph.

        Args:
            end_points (List[str]): A list of node IDs to be set as end points.

        Raises:
            ValueError: If any of the specified node IDs do not exist in the graph.
        """
        for node_id in end_points:
            if node_id not in self.nodes:
                raise ValueError(
                    f"Node with id {node_id} does not exist."
                )
        self.end_points = end_points

    def visualize(self) -> str:
        """
        Generates a string representation of the workflow graph in the Mermaid syntax.

        Returns:
            str: The Mermaid string representation of the workflow graph.
        """
        mermaid_str = "graph TD\n"
        for node_id, node in self.nodes.items():
            mermaid_str += f"    {node_id}[{node_id}]\n"
        for edge in self.edges:
            mermaid_str += f"    {edge.source} --> {edge.target}\n"
        return mermaid_str

    def run(
        self, task: str = None, *args, **kwargs
    ) -> Dict[str, Any]:
        """
        Function to run the workflow graph.

        Args:
            task (str): The task to be executed by the workflow.
            *args: Variable length argument list.
            **kwargs: Arbitrary keyword arguments.

        Returns:
            Dict[str, Any]: A dictionary containing the results of the execution.

        Raises:
            ValueError: If no entry points or end points are defined in the graph.

        """
        try:
            loop = 0
            while loop < self.max_loops:
                # Ensure all nodes and edges are valid
                if not self.entry_points:
                    raise ValueError(
                        "At least one entry point must be defined."
                    )
                if not self.end_points:
                    raise ValueError(
                        "At least one end point must be defined."
                    )

                # Perform a topological sort of the graph to ensure proper execution order
                sorted_nodes = list(nx.topological_sort(self.graph))

                # Initialize execution state
                execution_results = {}

                for node_id in sorted_nodes:
                    node = self.nodes[node_id]
                    if node.type == NodeType.TASK:
                        print(f"Executing task: {node_id}")
                        result = node.callable()
                    elif node.type == NodeType.AGENT:
                        print(f"Executing agent: {node_id}")
                        result = node.agent.run(task, *args, **kwargs)
                    execution_results[node_id] = result

                loop += 1

                return execution_results
        except Exception as e:
            logger.info(f"Error in running the workflow: {e}")
            raise e


# # Example usage
# if __name__ == "__main__":
#     from swarms import Agent

#     import os
#     from dotenv import load_dotenv

#     load_dotenv()

#     api_key = os.environ.get("OPENAI_API_KEY")

#     llm = OpenAIChat(
#         temperature=0.5, openai_api_key=api_key, max_tokens=4000
#     )
#     agent1 = Agent(llm=llm, max_loops=1, autosave=True, dashboard=True)
#     agent2 = Agent(llm=llm, max_loops=1, autosave=True, dashboard=True)

#     def sample_task():
#         print("Running sample task")
#         return "Task completed"

#     wf_graph = GraphWorkflow()
#     wf_graph.add_node(Node(id="agent1", type=NodeType.AGENT, agent=agent1))
#     wf_graph.add_node(Node(id="agent2", type=NodeType.AGENT, agent=agent2))
#     wf_graph.add_node(
#         Node(id="task1", type=NodeType.TASK, callable=sample_task)
#     )
#     wf_graph.add_edge(Edge(source="agent1", target="task1"))
#     wf_graph.add_edge(Edge(source="agent2", target="task1"))

#     wf_graph.set_entry_points(["agent1", "agent2"])
#     wf_graph.set_end_points(["task1"])

#     print(wf_graph.visualize())

#     # Run the workflow
#     results = wf_graph.run()
#     print("Execution results:", results)