File size: 24,453 Bytes
d8d14f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
import os
import asyncio
import json
import uuid
from swarms.utils.file_processing import create_file_in_folder
from abc import ABC
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import (
    Any,
    Callable,
    Dict,
    List,
    Optional,
    Sequence,
)

import yaml

from swarms.structs.agent import Agent
from swarms.structs.conversation import Conversation
from swarms.structs.omni_agent_types import AgentType
from pydantic import BaseModel
from swarms.utils.pandas_utils import (
    dict_to_dataframe,
    display_agents_info,
    pydantic_model_to_dataframe,
)
from swarms.utils.loguru_logger import initialize_logger

logger = initialize_logger(log_folder="base_swarm")


class BaseSwarm(ABC):
    """
    Base Swarm Class for all multi-agent systems

    Attributes:
        agents (List[Agent]): A list of agents
        max_loops (int): The maximum number of loops to run


    Methods:
        communicate: Communicate with the swarm through the orchestrator, protocols, and the universal communication layer
        run: Run the swarm
        step: Step the swarm
        add_agent: Add a agent to the swarm
        remove_agent: Remove a agent from the swarm
        broadcast: Broadcast a message to all agents
        reset: Reset the swarm
        plan: agents must individually plan using a workflow or pipeline
        direct_message: Send a direct message to a agent
        autoscaler: Autoscaler that acts like kubernetes for autonomous agents
        get_agent_by_id: Locate a agent by id
        get_agent_by_name: Locate a agent by name
        assign_task: Assign a task to a agent
        get_all_tasks: Get all tasks
        get_finished_tasks: Get all finished tasks
        get_pending_tasks: Get all penPding tasks
        pause_agent: Pause a agent
        resume_agent: Resume a agent
        stop_agent: Stop a agent
        restart_agent: Restart agent
        scale_up: Scale up the number of agents
        scale_down: Scale down the number of agents
        scale_to: Scale to a specific number of agents
        get_all_agents: Get all agents
        get_swarm_size: Get the size of the swarm
        get_swarm_status: Get the status of the swarm
        save_swarm_state: Save the swarm state
        loop: Loop through the swarm
        run_async: Run the swarm asynchronously
        run_batch_async: Run the swarm asynchronously
        run_batch: Run the swarm asynchronously
        batched_run: Run the swarm asynchronously
        abatch_run: Asynchronous batch run with language model
        arun: Asynchronous run

    """

    def __init__(
        self,
        name: Optional[str] = None,
        description: Optional[str] = None,
        agents: Optional[List[Agent]] = None,
        models: Optional[List[Any]] = None,
        max_loops: Optional[int] = 200,
        callbacks: Optional[Sequence[callable]] = None,
        autosave: Optional[bool] = False,
        logging: Optional[bool] = False,
        return_metadata: Optional[bool] = False,
        metadata_filename: Optional[
            str
        ] = "multiagent_structure_metadata.json",
        stopping_function: Optional[Callable] = None,
        stopping_condition: Optional[str] = "stop",
        stopping_condition_args: Optional[Dict] = None,
        agentops_on: Optional[bool] = False,
        speaker_selection_func: Optional[Callable] = None,
        rules: Optional[str] = None,
        collective_memory_system: Optional[Any] = False,
        agent_ops_on: bool = False,
        output_schema: Optional[BaseModel] = None,
        *args,
        **kwargs,
    ):
        """Initialize the swarm with agents"""
        self.name = name
        self.description = description
        self.agents = agents
        self.models = models
        self.max_loops = max_loops
        self.callbacks = callbacks
        self.autosave = autosave
        self.logging = logging
        self.return_metadata = return_metadata
        self.metadata_filename = metadata_filename
        self.stopping_function = stopping_function
        self.stopping_condition = stopping_condition
        self.stopping_condition_args = stopping_condition_args
        self.agentops_on = agentops_on
        self.speaker_selection_func = speaker_selection_func
        self.rules = rules
        self.collective_memory_system = collective_memory_system
        self.agent_ops_on = agent_ops_on
        self.output_schema = output_schema

        logger.info("Reliability checks activated.")
        # Ensure that agents is exists
        if self.agents is None:
            logger.info("Agents must be provided.")
            raise ValueError("Agents must be provided.")

        # Ensure that agents is a list
        if not isinstance(self.agents, list):
            logger.error("Agents must be a list.")
            raise TypeError("Agents must be a list.")

        # Ensure that agents is not empty
        if len(self.agents) == 0:
            logger.error("Agents list must not be empty.")
            raise ValueError("Agents list must not be empty.")

        # Initialize conversation
        self.conversation = Conversation(
            time_enabled=True, rules=self.rules, *args, **kwargs
        )

        # Handle callbacks
        if callbacks is not None:
            for callback in self.callbacks:
                if not callable(callback):
                    raise TypeError("Callback must be callable.")

        # Handle autosave
        if autosave:
            self.save_to_json(metadata_filename)

        # Handle stopping function
        if stopping_function is not None:
            if not callable(stopping_function):
                raise TypeError("Stopping function must be callable.")
            if stopping_condition_args is None:
                stopping_condition_args = {}
            self.stopping_condition_args = stopping_condition_args
            self.stopping_condition = stopping_condition
            self.stopping_function = stopping_function

        # Handle stopping condition
        if stopping_condition is not None:
            if stopping_condition_args is None:
                stopping_condition_args = {}
            self.stopping_condition_args = stopping_condition_args
            self.stopping_condition = stopping_condition

        # If agentops is enabled, try to import agentops
        if agentops_on is True:
            for agent in self.agents:
                agent.agent_ops_on = True

        # Handle speaker selection function
        if speaker_selection_func is not None:
            if not callable(speaker_selection_func):
                raise TypeError(
                    "Speaker selection function must be callable."
                )
            self.speaker_selection_func = speaker_selection_func

        # Add the check for all the agents to see if agent ops is on!
        if agent_ops_on is True:
            for agent in self.agents:
                agent.agent_ops_on = True

        # Agents dictionary with agent name as key and agent object as value
        self.agents_dict = {
            agent.agent_name: agent for agent in self.agents
        }

    def communicate(self):
        """Communicate with the swarm through the orchestrator, protocols, and the universal communication layer"""
        ...

    def run(self):
        """Run the swarm"""
        ...

    def __call__(
        self,
        task,
        *args,
        **kwargs,
    ):
        """Call self as a function

        Args:
            task (_type_): _description_

        Returns:
            _type_: _description_
        """
        try:
            return self.run(task, *args, **kwargs)
        except Exception as error:
            logger.error(f"Error running {self.__class__.__name__}")
            raise error

    def step(self):
        """Step the swarm"""

    def add_agent(self, agent: AgentType):
        """Add a agent to the swarm"""
        self.agents.append(agent)

    def add_agents(self, agents: List[AgentType]):
        """Add a list of agents to the swarm"""
        self.agents.extend(agents)

    def add_agent_by_id(self, agent_id: str):
        """Add a agent to the swarm by id"""
        agent = self.get_agent_by_id(agent_id)
        self.add_agent(agent)

    def remove_agent(self, agent: AgentType):
        """Remove a agent from the swarm"""
        self.agents.remove(agent)

    def get_agent_by_name(self, name: str):
        """Get a agent by name"""
        for agent in self.agents:
            if agent.name == name:
                return agent

    def reset_all_agents(self):
        """Resets the state of all agents."""
        for agent in self.agents:
            agent.reset()

    def broadcast(
        self, message: str, sender: Optional[AgentType] = None
    ):
        """Broadcast a message to all agents"""

    def reset(self):
        """Reset the swarm"""

    def plan(self, task: str):
        """agents must individually plan using a workflow or pipeline"""

    def self_find_agent_by_name(self, name: str):
        """
        Find an agent by its name.

        Args:
            name (str): The name of the agent to find.

        Returns:
            Agent: The Agent object if found, None otherwise.
        """
        for agent in self.agents:
            if agent.agent_name == name:
                return agent
        return None

    def self_find_agent_by_id(self, id: uuid.UUID):
        """
        Find an agent by its id.

        Args:
            id (str): The id of the agent to find.

        Returns:
            Agent: The Agent object if found, None otherwise.
        """
        for agent in self.agents:
            if agent.id == id:
                return agent
        return None

    def agent_exists(self, name: str):
        """
        Check if an agent exists in the swarm.

        Args:
            name (str): The name of the agent to check.

        Returns:
            bool: True if the agent exists, False otherwise.
        """
        return self.self_find_agent_by_name(name) is not None

    def direct_message(
        self,
        message: str,
        sender: AgentType,
        recipient: AgentType,
    ):
        """Send a direct message to a agent"""

    def autoscaler(self, num_agents: int, agent: List[AgentType]):
        """Autoscaler that acts like kubernetes for autonomous agents"""

    def get_agent_by_id(self, id: str) -> AgentType:
        """Locate a agent by id"""

    def assign_task(self, agent: AgentType, task: Any) -> Dict:
        """Assign a task to a agent"""

    def get_all_tasks(self, agent: AgentType, task: Any):
        """Get all tasks"""

    def get_finished_tasks(self) -> List[Dict]:
        """Get all finished tasks"""

    def get_pending_tasks(self) -> List[Dict]:
        """Get all pending tasks"""

    def pause_agent(self, agent: AgentType, agent_id: str):
        """Pause a agent"""

    def resume_agent(self, agent: AgentType, agent_id: str):
        """Resume a agent"""

    def stop_agent(self, agent: AgentType, agent_id: str):
        """Stop a agent"""

    def restart_agent(self, agent: AgentType):
        """Restart agent"""

    def scale_up(self, num_agent: int):
        """Scale up the number of agents"""

    def scale_down(self, num_agent: int):
        """Scale down the number of agents"""

    def scale_to(self, num_agent: int):
        """Scale to a specific number of agents"""

    def get_all_agents(self) -> List[AgentType]:
        """Get all agents"""

    def get_swarm_size(self) -> int:
        """Get the size of the swarm"""

    # #@abstractmethod
    def get_swarm_status(self) -> Dict:
        """Get the status of the swarm"""

    # #@abstractmethod
    def save_swarm_state(self):
        """Save the swarm state"""

    def batched_run(self, tasks: List[Any], *args, **kwargs):
        """_summary_

        Args:
            tasks (List[Any]): _description_
        """
        # Implement batched run
        return [self.run(task, *args, **kwargs) for task in tasks]

    async def abatch_run(self, tasks: List[str], *args, **kwargs):
        """Asynchronous batch run with language model

        Args:
            tasks (List[str]): _description_

        Returns:
            _type_: _description_
        """
        return await asyncio.gather(
            *(self.arun(task, *args, **kwargs) for task in tasks)
        )

    async def arun(self, task: Optional[str] = None, *args, **kwargs):
        """Asynchronous run

        Args:
            task (Optional[str], optional): _description_. Defaults to None.
        """
        loop = asyncio.get_event_loop()
        result = await loop.run_in_executor(
            None, self.run, task, *args, **kwargs
        )
        return result

    def loop(
        self,
        task: Optional[str] = None,
        *args,
        **kwargs,
    ):
        """Loop through the swarm

        Args:
            task (Optional[str], optional): _description_. Defaults to None.
        """
        # Loop through the self.max_loops
        for i in range(self.max_loops):
            self.run(task, *args, **kwargs)

    async def aloop(
        self,
        task: Optional[str] = None,
        *args,
        **kwargs,
    ):
        """Asynchronous loop through the swarm

        Args:
            task (Optional[str], optional): _description_. Defaults to None.
        """
        # Async Loop through the self.max_loops
        loop = asyncio.get_event_loop()
        result = await loop.run_in_executor(
            None, self.loop, task, *args, **kwargs
        )
        return result

    def run_async(self, task: Optional[str] = None, *args, **kwargs):
        """Run the swarm asynchronously

        Args:
            task (Optional[str], optional): _description_. Defaults to None.
        """
        loop = asyncio.get_event_loop()
        result = loop.run_until_complete(
            self.arun(task, *args, **kwargs)
        )
        return result

    def run_batch_async(self, tasks: List[str], *args, **kwargs):
        """Run the swarm asynchronously

        Args:
            task (Optional[str], optional): _description_. Defaults to None.
        """
        loop = asyncio.get_event_loop()
        result = loop.run_until_complete(
            self.abatch_run(tasks, *args, **kwargs)
        )
        return result

    def run_batch(self, tasks: List[str], *args, **kwargs):
        """Run the swarm asynchronously

        Args:
            task (Optional[str], optional): _description_. Defaults to None.
        """
        return self.batched_run(tasks, *args, **kwargs)

    def select_agent_by_name(self, agent_name: str):
        """
        Select an agent through their name
        """
        # Find agent with id
        for agent in self.agents:
            if agent.name == agent_name:
                return agent

    def task_assignment_by_id(
        self, task: str, agent_id: str, *args, **kwargs
    ):
        """
        Assign a task to an agent
        """
        # Assign task to agent by their agent id
        agent = self.select_agent(agent_id)
        return agent.run(task, *args, **kwargs)

    def task_assignment_by_name(
        self, task: str, agent_name: str, *args, **kwargs
    ):
        """
        Assign a task to an agent
        """
        # Assign task to agent by their agent id
        agent = self.select_agent_by_name(agent_name)
        return agent.run(task, *args, **kwargs)

    def concurrent_run(self, task: str) -> List[str]:
        """Synchronously run the task on all llms and collect responses"""
        with ThreadPoolExecutor() as executor:
            future_to_llm = {
                executor.submit(agent, task): agent
                for agent in self.agents
            }
            responses = []
            for future in as_completed(future_to_llm):
                try:
                    responses.append(future.result())
                except Exception as error:
                    print(
                        f"{future_to_llm[future]} generated an"
                        f" exception: {error}"
                    )
        self.last_responses = responses
        self.task_history.append(task)
        return responses

    def add_llm(self, agent: Callable):
        """Add an llm to the god mode"""
        self.agents.append(agent)

    def remove_llm(self, agent: Callable):
        """Remove an llm from the god mode"""
        self.agents.remove(agent)

    def run_all(self, task: str = None, *args, **kwargs):
        """Run all agents

        Args:
            task (str, optional): _description_. Defaults to None.

        Returns:
            _type_: _description_
        """
        responses = []
        for agent in self.agents:
            responses.append(agent(task, *args, **kwargs))
        return responses

    def run_on_all_agents(self, task: str = None, *args, **kwargs):
        """Run on all agents

        Args:
            task (str, optional): _description_. Defaults to None.

        Returns:
            _type_: _description_
        """
        with ThreadPoolExecutor() as executor:
            responses = executor.map(
                lambda agent: agent(task, *args, **kwargs),
                self.agents,
            )
        return list(responses)

    def add_swarm_entry(self, swarm):
        """
        Add the information of a joined Swarm to the registry.

        Args:
            swarm (SwarmManagerBase): Instance of SwarmManagerBase representing the joined Swarm.

        Returns:
            None
        """

    def add_agent_entry(self, agent: Agent):
        """
        Add the information of an Agent to the registry.

        Args:
            agent (Agent): Instance of Agent representing the Agent.

        Returns:
            None
        """

    def retrieve_swarm_information(self, swarm_id: str):
        """
        Retrieve the information of a specific Swarm from the registry.

        Args:
            swarm_id (str): Unique identifier of the Swarm.

        Returns:
            SwarmManagerBase: Instance of SwarmManagerBase representing the retrieved Swarm, or None if not found.
        """

    def retrieve_joined_agents(self, agent_id: str) -> List[Agent]:
        """
        Retrieve the information the Agents which have joined the registry.

        Returns:
            Agent: Instance of Agent representing the retrieved Agent, or None if not found.
        """

    def join_swarm(
        self, from_entity: Agent | Agent, to_entity: Agent
    ):
        """
        Add a relationship between a Swarm and an Agent or other Swarm to the registry.

        Args:
            from (Agent | SwarmManagerBase): Instance of Agent or SwarmManagerBase representing the source of the relationship.
        """

    def metadata(self):
        """
        Get the metadata of the multi-agent structure.

        Returns:
            dict: The metadata of the multi-agent structure.
        """
        return {
            "agents": self.agents,
            "callbacks": self.callbacks,
            "autosave": self.autosave,
            "logging": self.logging,
            "conversation": self.conversation,
        }

    def save_to_json(self, filename: str):
        """
        Save the current state of the multi-agent structure to a JSON file.

        Args:
            filename (str): The name of the file to save the multi-agent structure to.

        Returns:
            None
        """
        try:
            with open(filename, "w") as f:
                json.dump(self.__dict__, f)
        except Exception as e:
            logger.error(e)

    def load_from_json(self, filename: str):
        """
        Load the state of the multi-agent structure from a JSON file.

        Args:
            filename (str): The name of the file to load the multi-agent structure from.

        Returns:
            None
        """
        try:
            with open(filename) as f:
                self.__dict__ = json.load(f)
        except Exception as e:
            logger.error(e)

    def save_to_yaml(self, filename: str):
        """
        Save the current state of the multi-agent structure to a YAML file.

        Args:
            filename (str): The name of the file to save the multi-agent structure to.

        Returns:
            None
        """
        try:
            with open(filename, "w") as f:
                yaml.dump(self.__dict__, f)
        except Exception as e:
            logger.error(e)

    def load_from_yaml(self, filename: str):
        """
        Load the state of the multi-agent structure from a YAML file.

        Args:
            filename (str): The name of the file to load the multi-agent structure from.

        Returns:
            None
        """
        try:
            with open(filename) as f:
                self.__dict__ = yaml.load(f)
        except Exception as e:
            logger.error(e)

    def __repr__(self):
        return f"{self.__class__.__name__}({self.__dict__})"

    def __str__(self):
        return f"{self.__class__.__name__}({self.__dict__})"

    def __len__(self):
        return len(self.agents)

    def __getitem__(self, index):
        return self.agents[index]

    def __setitem__(self, index, value):
        self.agents[index] = value

    def __delitem__(self, index):
        del self.agents[index]

    def __iter__(self):
        return iter(self.agents)

    def __reversed__(self):
        return reversed(self.agents)

    def __contains__(self, value):
        return value in self.agents

    def agent_error_handling_check(self):
        try:
            if self.agents is None:
                message = "You have not passed in any agents, you need to input agents to run a swarm"
                logger.info(message)
                raise ValueError(message)
        except Exception as error:
            logger.info(error)
            raise error

    def swarm_initialization(self, *args, **kwargs):
        """
        Initializes the hierarchical swarm.

        Args:
            *args: Additional positional arguments.
            **kwargs: Additional keyword arguments.

        Returns:
            None

        """
        logger.info(
            f"Initializing the hierarchical swarm: {self.name}"
        )
        logger.info(f"Purpose of this swarm: {self.description}")

        # Now log number of agnets and their names
        logger.info(f"Number of agents: {len(self.agents)}")
        logger.info(
            f"Agent names: {[agent.name for agent in self.agents]}"
        )

        # Now see if agents is not empty
        if len(self.agents) == 0:
            logger.info(
                "No agents found. Please add agents to the swarm."
            )
            return None

        # Now see if director is not empty
        if self.director is None:
            logger.info(
                "No director found. Please add a director to the swarm."
            )
            return None

        logger.info(
            f"Initialization complete for the hierarchical swarm: {self.name}"
        )

    def export_output_schema(self):
        """
        Export the output schema of the swarm.

        Returns:
            dict: The output schema of the swarm.

        """
        return self.output_schema.model_dump_json(indent=4)

    def export_output_schema_dict(self):
        return self.output_schema.model_dump()

    def export_and_autosave(self):
        content = self.export_output_schema()

        create_file_in_folder(
            os.getenv("WORKSPACE_DIR"),
            self.metadata_filename,
            content=content,
        )

        return logger.info(
            f"Metadata saved to {self.metadata_filename}"
        )

    def list_agents(self):
        """
        List all agents in the swarm.

        Returns:
            None
        """
        display_agents_info(self.agents)

    def agents_to_dataframe(self):
        """
        Convert agents to a pandas DataFrame.
        """
        data = [agent.agent_output.dict() for agent in self.agents]
        return dict_to_dataframe(data)

    def model_to_dataframe(self):
        """
        Convert the Pydantic model to a pandas DataFrame.
        """
        return pydantic_model_to_dataframe(self.output_schema)