File size: 13,037 Bytes
d8d14f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
from typing import List, Optional

from tenacity import retry, stop_after_attempt, wait_exponential
from typing import Union, Callable, Any
from swarms import Agent
from swarms.utils.loguru_logger import initialize_logger
from swarms.utils.lazy_loader import lazy_import_decorator
from swarms.utils.auto_download_check_packages import (
    auto_check_and_download_package,
)


logger = initialize_logger(log_folder="agent_router")


@lazy_import_decorator
class AgentRouter:
    """
    Initialize the AgentRouter.

    Args:
        collection_name (str): Name of the collection in the vector database.
        persist_directory (str): Directory to persist the vector database.
        n_agents (int): Number of agents to return in queries.
        *args: Additional arguments to pass to the chromadb Client.
        **kwargs: Additional keyword arguments to pass to the chromadb Client.
    """

    def __init__(
        self,
        collection_name: str = "agents",
        persist_directory: str = "./vector_db",
        n_agents: int = 1,
        *args,
        **kwargs,
    ):
        try:
            import chromadb
        except ImportError:
            auto_check_and_download_package(
                "chromadb", package_manager="pip", upgrade=True
            )
            import chromadb

        self.collection_name = collection_name
        self.n_agents = n_agents
        self.persist_directory = persist_directory
        self.client = chromadb.Client(*args, **kwargs)
        self.collection = self.client.create_collection(
            collection_name
        )
        self.agents: List[Agent] = []

    @retry(
        stop=stop_after_attempt(3),
        wait=wait_exponential(multiplier=1, min=4, max=10),
    )
    def add_agent(self, agent: Agent) -> None:
        """
        Add an agent to the vector database.

        Args:
            agent (Agent): The agent to add.

        Raises:
            Exception: If there's an error adding the agent to the vector database.
        """
        try:
            agent_text = f"{agent.name} {agent.description} {agent.system_prompt}"
            self.collection.add(
                documents=[agent_text],
                metadatas=[{"name": agent.name}],
                ids=[agent.name],
            )
            self.agents.append(agent)
            logger.info(
                f"Added agent {agent.name} to the vector database."
            )
        except Exception as e:
            logger.error(
                f"Error adding agent {agent.name} to the vector database: {str(e)}"
            )
            raise

    def add_agents(
        self, agents: List[Union[Agent, Callable, Any]]
    ) -> None:
        """
        Add multiple agents to the vector database.

        Args:
            agents (List[Union[Agent, Callable, Any]]): List of agents to add.
        """
        for agent in agents:
            self.add_agent(agent)

    def update_agent_history(self, agent_name: str) -> None:
        """
        Update the agent's entry in the vector database with its interaction history.

        Args:
            agent_name (str): The name of the agent to update.
        """
        agent = next(
            (a for a in self.agents if a.name == agent_name), None
        )
        if agent:
            history = agent.short_memory.return_history_as_string()
            history_text = " ".join(history)
            updated_text = f"{agent.name} {agent.description} {agent.system_prompt} {history_text}"

            self.collection.update(
                ids=[agent_name],
                documents=[updated_text],
                metadatas=[{"name": agent_name}],
            )
            logger.info(
                f"Updated agent {agent_name} with interaction history."
            )
        else:
            logger.warning(
                f"Agent {agent_name} not found in the database."
            )

    @retry(
        stop=stop_after_attempt(3),
        wait=wait_exponential(multiplier=1, min=4, max=10),
    )
    def find_best_agent(
        self, task: str, *args, **kwargs
    ) -> Optional[Agent]:
        """
        Find the best agent for a given task.

        Args:
            task (str): The task description.
            *args: Additional arguments to pass to the collection.query method.
            **kwargs: Additional keyword arguments to pass to the collection.query method.

        Returns:
            Optional[Agent]: The best matching agent, if found.

        Raises:
            Exception: If there's an error finding the best agent.
        """
        try:
            results = self.collection.query(
                query_texts=[task],
                n_results=self.n_agents,
                *args,
                **kwargs,
            )

            if results["ids"]:
                best_match_name = results["ids"][0][0]
                best_agent = next(
                    (
                        a
                        for a in self.agents
                        if a.name == best_match_name
                    ),
                    None,
                )
                if best_agent:
                    logger.info(
                        f"Found best matching agent: {best_match_name}"
                    )
                    return best_agent
                else:
                    logger.warning(
                        f"Agent {best_match_name} found in index but not in agents list."
                    )
            else:
                logger.warning(
                    "No matching agent found for the given task."
                )

            return None
        except Exception as e:
            logger.error(f"Error finding best agent: {str(e)}")
            raise


# # Example usage
# if __name__ == "__main__":
#     from dotenv import load_dotenv
#     from swarm_models import OpenAIChat

#     load_dotenv()

#     # Get the OpenAI API key from the environment variable
#     api_key = os.getenv("GROQ_API_KEY")

#     # Model
#     model = OpenAIChat(
#         openai_api_base="https://api.groq.com/openai/v1",
#         openai_api_key=api_key,
#         model_name="llama-3.1-70b-versatile",
#         temperature=0.1,
#     )
#     # Initialize the vector database
#     vector_db = AgentRouter()

#     # Define specialized system prompts for each agent
#     DATA_EXTRACTOR_PROMPT = """You are a highly specialized private equity agent focused on data extraction from various documents. Your expertise includes:
#     1. Extracting key financial metrics (revenue, EBITDA, growth rates, etc.) from financial statements and reports
#     2. Identifying and extracting important contract terms from legal documents
#     3. Pulling out relevant market data from industry reports and analyses
#     4. Extracting operational KPIs from management presentations and internal reports
#     5. Identifying and extracting key personnel information from organizational charts and bios
#     Provide accurate, structured data extracted from various document types to support investment analysis."""

#     SUMMARIZER_PROMPT = """You are an expert private equity agent specializing in summarizing complex documents. Your core competencies include:
#     1. Distilling lengthy financial reports into concise executive summaries
#     2. Summarizing legal documents, highlighting key terms and potential risks
#     3. Condensing industry reports to capture essential market trends and competitive dynamics
#     4. Summarizing management presentations to highlight key strategic initiatives and projections
#     5. Creating brief overviews of technical documents, emphasizing critical points for non-technical stakeholders
#     Deliver clear, concise summaries that capture the essence of various documents while highlighting information crucial for investment decisions."""

#     FINANCIAL_ANALYST_PROMPT = """You are a specialized private equity agent focused on financial analysis. Your key responsibilities include:
#     1. Analyzing historical financial statements to identify trends and potential issues
#     2. Evaluating the quality of earnings and potential adjustments to EBITDA
#     3. Assessing working capital requirements and cash flow dynamics
#     4. Analyzing capital structure and debt capacity
#     5. Evaluating financial projections and underlying assumptions
#     Provide thorough, insightful financial analysis to inform investment decisions and valuation."""

#     MARKET_ANALYST_PROMPT = """You are a highly skilled private equity agent specializing in market analysis. Your expertise covers:
#     1. Analyzing industry trends, growth drivers, and potential disruptors
#     2. Evaluating competitive landscape and market positioning
#     3. Assessing market size, segmentation, and growth potential
#     4. Analyzing customer dynamics, including concentration and loyalty
#     5. Identifying potential regulatory or macroeconomic impacts on the market
#     Deliver comprehensive market analysis to assess the attractiveness and risks of potential investments."""

#     OPERATIONAL_ANALYST_PROMPT = """You are an expert private equity agent focused on operational analysis. Your core competencies include:
#     1. Evaluating operational efficiency and identifying improvement opportunities
#     2. Analyzing supply chain and procurement processes
#     3. Assessing sales and marketing effectiveness
#     4. Evaluating IT systems and digital capabilities
#     5. Identifying potential synergies in merger or add-on acquisition scenarios
#     Provide detailed operational analysis to uncover value creation opportunities and potential risks."""

#     # Initialize specialized agents
#     data_extractor_agent = Agent(
#         agent_name="Data-Extractor",
#         system_prompt=DATA_EXTRACTOR_PROMPT,
#         llm=model,
#         max_loops=1,
#         autosave=True,
#         verbose=True,
#         dynamic_temperature_enabled=True,
#         saved_state_path="data_extractor_agent.json",
#         user_name="pe_firm",
#         retry_attempts=1,
#         context_length=200000,
#         output_type="string",
#     )

#     summarizer_agent = Agent(
#         agent_name="Document-Summarizer",
#         system_prompt=SUMMARIZER_PROMPT,
#         llm=model,
#         max_loops=1,
#         autosave=True,
#         verbose=True,
#         dynamic_temperature_enabled=True,
#         saved_state_path="summarizer_agent.json",
#         user_name="pe_firm",
#         retry_attempts=1,
#         context_length=200000,
#         output_type="string",
#     )

#     financial_analyst_agent = Agent(
#         agent_name="Financial-Analyst",
#         system_prompt=FINANCIAL_ANALYST_PROMPT,
#         llm=model,
#         max_loops=1,
#         autosave=True,
#         verbose=True,
#         dynamic_temperature_enabled=True,
#         saved_state_path="financial_analyst_agent.json",
#         user_name="pe_firm",
#         retry_attempts=1,
#         context_length=200000,
#         output_type="string",
#     )

#     market_analyst_agent = Agent(
#         agent_name="Market-Analyst",
#         system_prompt=MARKET_ANALYST_PROMPT,
#         llm=model,
#         max_loops=1,
#         autosave=True,
#         verbose=True,
#         dynamic_temperature_enabled=True,
#         saved_state_path="market_analyst_agent.json",
#         user_name="pe_firm",
#         retry_attempts=1,
#         context_length=200000,
#         output_type="string",
#     )

#     operational_analyst_agent = Agent(
#         agent_name="Operational-Analyst",
#         system_prompt=OPERATIONAL_ANALYST_PROMPT,
#         llm=model,
#         max_loops=1,
#         autosave=True,
#         verbose=True,
#         dynamic_temperature_enabled=True,
#         saved_state_path="operational_analyst_agent.json",
#         user_name="pe_firm",
#         retry_attempts=1,
#         context_length=200000,
#         output_type="string",
#     )

#     # Create agents (using the agents from the original code)
#     agents_to_add = [
#         data_extractor_agent,
#         summarizer_agent,
#         financial_analyst_agent,
#         market_analyst_agent,
#         operational_analyst_agent,
#     ]

#     # Add agents to the vector database
#     for agent in agents_to_add:
#         vector_db.add_agent(agent)

#     # Example task
#     task = "Analyze the financial statements of a potential acquisition target and identify key growth drivers."

#     # Find the best agent for the task
#     best_agent = vector_db.find_best_agent(task)

#     if best_agent:
#         logger.info(f"Best agent for the task: {best_agent.name}")
#         # Use the best agent to perform the task
#         result = best_agent.run(task)
#         print(f"Task result: {result}")

#         # Update the agent's history in the database
#         vector_db.update_agent_history(best_agent.name)
#     else:
#         print("No suitable agent found for the task.")

#     # Save the vector database