File size: 9,589 Bytes
d8d14f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import json
import os
import time
import uuid
from typing import Any, Callable, List

from pydantic import (
    BaseModel,
    Field,
    constr,
)
from pydantic.v1 import validator

from swarms.telemetry.capture_sys_data import (
    capture_system_data,
    log_agent_data,
)
from swarms.tools.base_tool import BaseTool
from swarms.utils.loguru_logger import initialize_logger

logger = initialize_logger("prompt")


class Prompt(BaseModel):
    """
    A class representing a prompt with content, edit history, and version control.
    This version is enhanced for production use, with thread-safety, logging, and additional functionality.
    Autosaving is now added to save the prompt to a specified folder within the WORKSPACE_DIR.

    Attributes:
        id (UUID): A unique identifier for the prompt.
        content (str): The main content of the prompt.
        created_at (datetime): The timestamp when the prompt was created.
        last_modified_at (datetime): The timestamp when the prompt was last modified.
        edit_count (int): The number of times the prompt has been edited.
        edit_history (List[str]): A list of all versions of the prompt, including current and previous versions.
        autosave (bool): Flag to enable or disable autosaving.
        autosave_folder (str): The folder path within WORKSPACE_DIR where the prompt will be autosaved.
    """

    id: str = Field(
        default=uuid.uuid4().hex,
        description="Unique identifier for the prompt",
    )
    name: str = Field(
        default="prompt", description="Name of your prompt"
    )
    description: str = Field(
        default="Simple Prompt",
        description="The description of the prompt",
    )
    content: constr(min_length=1, strip_whitespace=True) = Field(
        ..., description="The main content of the prompt"
    )
    created_at: str = Field(
        default_factory=lambda: time.strftime("%Y-%m-%d %H:%M:%S"),
        description="Time when the prompt was created",
    )
    last_modified_at: str = Field(
        default_factory=lambda: time.strftime("%Y-%m-%d %H:%M:%S"),
        description="Time when the prompt was last modified",
    )
    edit_count: int = Field(
        default=0,
        description="The number of times the prompt has been edited",
    )
    edit_history: List[str] = Field(
        default_factory=list,
        description="The history of edits, storing all prompt versions",
    )
    autosave: bool = Field(
        default=False,
        description="Flag to enable or disable autosaving",
    )
    autosave_folder: str = Field(
        default="prompts",
        description="The folder path within WORKSPACE_DIR where the prompt will be autosaved",
    )
    auto_generate_prompt: bool = Field(
        default=False,
        description="Flag to enable or disable auto-generating the prompt",
    )
    parent_folder: str = Field(
        default=os.getenv("WORKSPACE_DIR"),
        description="The folder where the autosave folder is in",
    )
    llm: Any = None

    @validator("edit_history", pre=True, always=True)
    def initialize_history(cls, v, values):
        """
        Initializes the edit history by storing the first version of the prompt.
        """
        if not v:
            return [
                values["content"]
            ]  # Store initial version in history
        return v

    def __init__(self, **data):
        super().__init__(**data)

        if self.autosave:
            self._autosave()

        if self.auto_generate_prompt and self.llm:
            self.auto_generate_prompt()

    def edit_prompt(self, new_content: str) -> None:
        """
        Edits the prompt content and updates the version control.
        This method is thread-safe to prevent concurrent access issues.
        If autosave is enabled, it saves the prompt to the specified folder.

        Args:
            new_content (str): The updated content of the prompt.

        Raises:
            ValueError: If the new content is identical to the current content.
        """
        if new_content == self.content:
            logger.warning(
                f"Edit attempt failed: new content is identical to current content for prompt {self.id}"
            )
            raise ValueError(
                "New content must be different from the current content."
            )

        # logger.info(
        #     f"Editing prompt {self.id}. Current content: '{self.content}'"
        # )
        self.edit_history.append(new_content)
        self.content = new_content
        self.edit_count += 1
        self.last_modified_at = time.strftime("%Y-%m-%d %H:%M:%S")

        # logger.debug(
        #     f"Prompt {self.id} updated. Edit count: {self.edit_count}. New content: '{self.content}'"
        # )

        if self.autosave:
            self._autosave()

    def log_telemetry(self):
        system_data = capture_system_data()
        merged_data = {**system_data, **self.model_dump()}
        log_agent_data(merged_data)

    def rollback(self, version: int) -> None:
        """
        Rolls back the prompt to a previous version based on the version index.
        This method is thread-safe to prevent concurrent access issues.
        If autosave is enabled, it saves the prompt to the specified folder after rollback.

        Args:
            version (int): The version index to roll back to (0 is the first version).

        Raises:
            IndexError: If the version number is out of range.
        """
        if version < 0 or version >= len(self.edit_history):
            logger.error(
                f"Rollback failed: invalid version {version} for prompt {self.id}"
            )
            raise IndexError("Invalid version number for rollback.")

        # logger.info(
        #     f"Rolling back prompt {self.id} to version {version}."
        # )
        self.content = self.edit_history[version]
        self.edit_count = version
        self.last_modified_at = time.strftime("%Y-%m-%d %H:%M:%S")
        # logger.debug(
        #     f"Prompt {self.id} rolled back to version {version}. Current content: '{self.content}'"
        # )

        self.log_telemetry()

        if self.autosave:
            self._autosave()

    def return_json(self):
        return self.model_dump_json(indent=4)

    def get_prompt(self) -> str:
        """
        Returns the current prompt content as a string.

        Returns:
            str: The current prompt content.
        """
        # logger.debug(f"Returning prompt {self.id} as a string.")
        self.log_telemetry()

        return self.content

    def save_to_storage(self) -> None:
        """
        Placeholder method for saving the prompt to persistent storage.
        In a production environment, this would integrate with a database or file system.

        Raises:
            NotImplementedError: This method is a placeholder for storage integration.
        """
        # logger.info(f"Saving prompt {self.id} to persistent storage.")
        raise NotImplementedError(
            "Persistent storage integration is required."
        )

    def load_from_storage(
        self, prompt_id: str = uuid.uuid4().hex
    ) -> None:
        """
        Placeholder method for loading the prompt from persistent storage by its ID.
        In a production environment, this would integrate with a database or file system.

        Args:
            prompt_id (UUID): The unique identifier of the prompt to load.

        Raises:
            NotImplementedError: This method is a placeholder for storage integration.
        """
        # logger.info(
        #     f"Loading prompt {prompt_id} from persistent storage."
        # )
        raise NotImplementedError(
            "Persistent storage integration is required."
        )

    def add_tools(self, tools: List[Callable]) -> str:
        tools_prompt = BaseTool(
            tools=tools, tool_system_prompt=None
        ).convert_tool_into_openai_schema()
        self.content += "\n"
        self.content += "\n"
        self.content += tools_prompt

    def _autosave(self) -> None:
        """
        Autosaves the prompt to a specified folder within WORKSPACE_DIR.
        """
        workspace_dir = os.getenv("WORKSPACE_DIR")
        if not workspace_dir:
            logger.error(
                "WORKSPACE_DIR environment variable is not set."
            )
            return

        autosave_path = os.path.join(
            workspace_dir, self.autosave_folder
        )
        if not os.path.exists(autosave_path):
            os.makedirs(autosave_path)

        file_path = os.path.join(
            autosave_path, f"prompt-id-{self.id}.json"
        )
        with open(file_path, "w") as file:
            json.dump(self.model_dump(), file)
        # logger.info(f"Autosaved prompt {self.id} to {file_path}.")

        # return "Prompt autosaved successfully."

    # def auto_generate_prompt(self):
    #     logger.info(f"Auto-generating prompt for {self.name}")
    #     task = self.name + " " + self.description + " " + self.content
    #     prompt = auto_generate_prompt(task, llm=self.llm, max_tokens=4000, use_second_sys_prompt=True)
    #     logger.info("Generated prompt successfully, updating content")
    #     self.edit_prompt(prompt)
    #     logger.info("Prompt content updated")

    #     return "Prompt auto-generated successfully."

    class Config:
        """Pydantic configuration for better JSON serialization."""

        use_enum_values = True
        arbitrary_types_allowed = True