File size: 36,868 Bytes
d8d14f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
import os
import threading
import time
from collections import deque
from dataclasses import dataclass
from datetime import datetime
from queue import Queue
from typing import Any, Dict, List, Optional, Tuple

import ccxt
import numpy as np
import pandas as pd
from dotenv import load_dotenv
from loguru import logger
from scipy import stats
from swarm_models import OpenAIChat

from swarms import Agent

logger.enable("")


@dataclass
class MarketSignal:
    timestamp: datetime
    signal_type: str
    source: str
    data: Dict[str, Any]
    confidence: float
    metadata: Dict[str, Any]


class MarketDataBuffer:
    def __init__(self, max_size: int = 10000):
        self.max_size = max_size
        self.data = deque(maxlen=max_size)
        self.lock = threading.Lock()

    def add(self, item: Any) -> None:
        with self.lock:
            self.data.append(item)

    def get_latest(self, n: int = None) -> List[Any]:
        with self.lock:
            if n is None:
                return list(self.data)
            return list(self.data)[-n:]


class SignalCSVWriter:
    def __init__(self, output_dir: str = "market_data"):
        self.output_dir = output_dir
        self.ensure_output_dir()
        self.files = {}

    def ensure_output_dir(self):
        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)

    def get_filename(self, signal_type: str, symbol: str) -> str:
        date_str = datetime.now().strftime("%Y%m%d")
        return (
            f"{self.output_dir}/{signal_type}_{symbol}_{date_str}.csv"
        )

    def write_order_book_signal(self, signal: MarketSignal):
        symbol = signal.data["symbol"]
        metrics = signal.data["metrics"]
        filename = self.get_filename("order_book", symbol)

        # Create header if file doesn't exist
        if not os.path.exists(filename):
            header = [
                "timestamp",
                "symbol",
                "bid_volume",
                "ask_volume",
                "mid_price",
                "bid_vwap",
                "ask_vwap",
                "spread",
                "depth_imbalance",
                "confidence",
            ]
            with open(filename, "w") as f:
                f.write(",".join(header) + "\n")

        # Write data
        data = [
            str(signal.timestamp),
            symbol,
            str(metrics["bid_volume"]),
            str(metrics["ask_volume"]),
            str(metrics["mid_price"]),
            str(metrics["bid_vwap"]),
            str(metrics["ask_vwap"]),
            str(metrics["spread"]),
            str(metrics["depth_imbalance"]),
            str(signal.confidence),
        ]

        with open(filename, "a") as f:
            f.write(",".join(data) + "\n")

    def write_tick_signal(self, signal: MarketSignal):
        symbol = signal.data["symbol"]
        metrics = signal.data["metrics"]
        filename = self.get_filename("tick_data", symbol)

        if not os.path.exists(filename):
            header = [
                "timestamp",
                "symbol",
                "vwap",
                "price_momentum",
                "volume_mean",
                "trade_intensity",
                "kyle_lambda",
                "roll_spread",
                "confidence",
            ]
            with open(filename, "w") as f:
                f.write(",".join(header) + "\n")

        data = [
            str(signal.timestamp),
            symbol,
            str(metrics["vwap"]),
            str(metrics["price_momentum"]),
            str(metrics["volume_mean"]),
            str(metrics["trade_intensity"]),
            str(metrics["kyle_lambda"]),
            str(metrics["roll_spread"]),
            str(signal.confidence),
        ]

        with open(filename, "a") as f:
            f.write(",".join(data) + "\n")

    def write_arbitrage_signal(self, signal: MarketSignal):
        if (
            "best_opportunity" not in signal.data
            or not signal.data["best_opportunity"]
        ):
            return

        symbol = signal.data["symbol"]
        opp = signal.data["best_opportunity"]
        filename = self.get_filename("arbitrage", symbol)

        if not os.path.exists(filename):
            header = [
                "timestamp",
                "symbol",
                "buy_venue",
                "sell_venue",
                "spread",
                "return",
                "buy_price",
                "sell_price",
                "confidence",
            ]
            with open(filename, "w") as f:
                f.write(",".join(header) + "\n")

        data = [
            str(signal.timestamp),
            symbol,
            opp["buy_venue"],
            opp["sell_venue"],
            str(opp["spread"]),
            str(opp["return"]),
            str(opp["buy_price"]),
            str(opp["sell_price"]),
            str(signal.confidence),
        ]

        with open(filename, "a") as f:
            f.write(",".join(data) + "\n")


class ExchangeManager:
    def __init__(self):
        self.available_exchanges = {
            "kraken": ccxt.kraken,
            "coinbase": ccxt.coinbase,
            "kucoin": ccxt.kucoin,
            "bitfinex": ccxt.bitfinex,
            "gemini": ccxt.gemini,
        }
        self.active_exchanges = {}
        self.test_exchanges()

    def test_exchanges(self):
        """Test each exchange and keep only the accessible ones"""
        for name, exchange_class in self.available_exchanges.items():
            try:
                exchange = exchange_class()
                exchange.load_markets()
                self.active_exchanges[name] = exchange
                logger.info(f"Successfully connected to {name}")
            except Exception as e:
                logger.warning(f"Could not connect to {name}: {e}")

    def get_primary_exchange(self) -> Optional[ccxt.Exchange]:
        """Get the first available exchange"""
        if not self.active_exchanges:
            raise RuntimeError("No exchanges available")
        return next(iter(self.active_exchanges.values()))

    def get_all_active_exchanges(self) -> Dict[str, ccxt.Exchange]:
        """Get all active exchanges"""
        return self.active_exchanges


class BaseMarketAgent(Agent):
    def __init__(
        self,
        agent_name: str,
        system_prompt: str,
        api_key: str,
        model_name: str = "gpt-4-0125-preview",
        temperature: float = 0.1,
    ):
        model = OpenAIChat(
            openai_api_key=api_key,
            model_name=model_name,
            temperature=temperature,
        )
        super().__init__(
            agent_name=agent_name,
            system_prompt=system_prompt,
            llm=model,
            max_loops=1,
            autosave=True,
            dashboard=False,
            verbose=True,
            dynamic_temperature_enabled=True,
            context_length=200000,
            streaming_on=True,
            output_type="str",
        )
        self.signal_queue = Queue()
        self.is_running = False
        self.last_update = datetime.now()
        self.update_interval = 1.0  # seconds

    def rate_limit_check(self) -> bool:
        current_time = datetime.now()
        if (
            current_time - self.last_update
        ).total_seconds() < self.update_interval:
            return False
        self.last_update = current_time
        return True


class OrderBookAgent(BaseMarketAgent):
    def __init__(self, api_key: str):
        system_prompt = """
        You are an Order Book Analysis Agent specialized in detecting institutional flows.
        Monitor order book depth and changes to identify potential large trades and institutional activity.
        Analyze patterns in order placement and cancellation rates.
        """
        super().__init__("OrderBookAgent", system_prompt, api_key)
        exchange_manager = ExchangeManager()
        self.exchange = exchange_manager.get_primary_exchange()
        self.order_book_buffer = MarketDataBuffer(max_size=100)
        self.vwap_window = 20

    def calculate_order_book_metrics(
        self, order_book: Dict
    ) -> Dict[str, float]:
        bids = np.array(order_book["bids"])
        asks = np.array(order_book["asks"])

        # Calculate key metrics
        bid_volume = np.sum(bids[:, 1])
        ask_volume = np.sum(asks[:, 1])
        mid_price = (bids[0][0] + asks[0][0]) / 2

        # Calculate VWAP
        bid_vwap = (
            np.sum(
                bids[: self.vwap_window, 0]
                * bids[: self.vwap_window, 1]
            )
            / bid_volume
            if bid_volume > 0
            else 0
        )
        ask_vwap = (
            np.sum(
                asks[: self.vwap_window, 0]
                * asks[: self.vwap_window, 1]
            )
            / ask_volume
            if ask_volume > 0
            else 0
        )

        # Calculate order book slope
        bid_slope = np.polyfit(
            range(len(bids[:10])), bids[:10, 0], 1
        )[0]
        ask_slope = np.polyfit(
            range(len(asks[:10])), asks[:10, 0], 1
        )[0]

        return {
            "bid_volume": bid_volume,
            "ask_volume": ask_volume,
            "mid_price": mid_price,
            "bid_vwap": bid_vwap,
            "ask_vwap": ask_vwap,
            "bid_slope": bid_slope,
            "ask_slope": ask_slope,
            "spread": asks[0][0] - bids[0][0],
            "depth_imbalance": (bid_volume - ask_volume)
            / (bid_volume + ask_volume),
        }

    def detect_large_orders(
        self, metrics: Dict[str, float], threshold: float = 2.0
    ) -> bool:
        historical_books = self.order_book_buffer.get_latest(20)
        if not historical_books:
            return False

        # Calculate historical volume statistics
        hist_volumes = [
            book["bid_volume"] + book["ask_volume"]
            for book in historical_books
        ]
        volume_mean = np.mean(hist_volumes)
        volume_std = np.std(hist_volumes)

        current_volume = metrics["bid_volume"] + metrics["ask_volume"]
        z_score = (current_volume - volume_mean) / (
            volume_std if volume_std > 0 else 1
        )

        return abs(z_score) > threshold

    def analyze_order_book(self, symbol: str) -> MarketSignal:
        if not self.rate_limit_check():
            return None

        try:
            order_book = self.exchange.fetch_order_book(
                symbol, limit=100
            )
            metrics = self.calculate_order_book_metrics(order_book)
            self.order_book_buffer.add(metrics)

            # Format data for LLM analysis
            analysis_prompt = f"""
            Analyze this order book for {symbol}:
            Bid Volume: {metrics['bid_volume']}
            Ask Volume: {metrics['ask_volume']}
            Mid Price: {metrics['mid_price']}
            Spread: {metrics['spread']}
            Depth Imbalance: {metrics['depth_imbalance']}
            
            What patterns do you see? Is there evidence of institutional activity?
            Are there any significant imbalances that could lead to price movement?
            """

            # Get LLM analysis
            llm_analysis = self.run(analysis_prompt)

            # Original signal creation with added LLM analysis
            return MarketSignal(
                timestamp=datetime.now(),
                signal_type="order_book_analysis",
                source="OrderBookAgent",
                data={
                    "metrics": metrics,
                    "large_order_detected": self.detect_large_orders(
                        metrics
                    ),
                    "symbol": symbol,
                    "llm_analysis": llm_analysis,  # Add LLM insights
                },
                confidence=min(
                    abs(metrics["depth_imbalance"]) * 0.7
                    + (
                        1.0
                        if self.detect_large_orders(metrics)
                        else 0.0
                    )
                    * 0.3,
                    1.0,
                ),
                metadata={
                    "update_latency": (
                        datetime.now() - self.last_update
                    ).total_seconds(),
                    "buffer_size": len(
                        self.order_book_buffer.get_latest()
                    ),
                },
            )
        except Exception as e:
            logger.error(f"Error in order book analysis: {str(e)}")
            return None


class TickDataAgent(BaseMarketAgent):
    def __init__(self, api_key: str):
        system_prompt = """
        You are a Tick Data Analysis Agent specialized in analyzing high-frequency price movements.
        Monitor tick-by-tick data for patterns indicating short-term price direction.
        Analyze trade size distribution and execution speed.
        """
        super().__init__("TickDataAgent", system_prompt, api_key)
        self.tick_buffer = MarketDataBuffer(max_size=5000)
        exchange_manager = ExchangeManager()
        self.exchange = exchange_manager.get_primary_exchange()

    def calculate_tick_metrics(
        self, ticks: List[Dict]
    ) -> Dict[str, float]:
        df = pd.DataFrame(ticks)
        df["price"] = pd.to_numeric(df["price"])
        df["volume"] = pd.to_numeric(df["amount"])

        # Calculate key metrics
        metrics = {}

        # Volume-weighted average price (VWAP)
        metrics["vwap"] = (df["price"] * df["volume"]).sum() / df[
            "volume"
        ].sum()

        # Price momentum
        metrics["price_momentum"] = df["price"].diff().mean()

        # Volume profile
        metrics["volume_mean"] = df["volume"].mean()
        metrics["volume_std"] = df["volume"].std()

        # Trade intensity
        time_diff = (
            df["timestamp"].max() - df["timestamp"].min()
        ) / 1000  # Convert to seconds
        metrics["trade_intensity"] = (
            len(df) / time_diff if time_diff > 0 else 0
        )

        # Microstructure indicators
        metrics["kyle_lambda"] = self.calculate_kyle_lambda(df)
        metrics["roll_spread"] = self.calculate_roll_spread(df)

        return metrics

    def calculate_kyle_lambda(self, df: pd.DataFrame) -> float:
        """Calculate Kyle's Lambda (price impact coefficient)"""
        try:
            price_changes = df["price"].diff().dropna()
            volume_changes = df["volume"].diff().dropna()

            if len(price_changes) > 1 and len(volume_changes) > 1:
                slope, _, _, _, _ = stats.linregress(
                    volume_changes, price_changes
                )
                return abs(slope)
        except Exception as e:
            logger.warning(f"Error calculating Kyle's Lambda: {e}")
        return 0.0

    def calculate_roll_spread(self, df: pd.DataFrame) -> float:
        """Calculate Roll's implied spread"""
        try:
            price_changes = df["price"].diff().dropna()
            if len(price_changes) > 1:
                autocov = np.cov(
                    price_changes[:-1], price_changes[1:]
                )[0][1]
                return 2 * np.sqrt(-autocov) if autocov < 0 else 0.0
        except Exception as e:
            logger.warning(f"Error calculating Roll spread: {e}")
        return 0.0

    def calculate_tick_metrics(
        self, ticks: List[Dict]
    ) -> Dict[str, float]:
        try:
            # Debug the incoming data structure
            logger.info(
                f"Raw tick data structure: {ticks[0] if ticks else 'No ticks'}"
            )

            # Convert trades to proper format
            formatted_trades = []
            for trade in ticks:
                formatted_trade = {
                    "price": float(
                        trade.get("price", trade.get("last", 0))
                    ),  # Handle different exchange formats
                    "amount": float(
                        trade.get(
                            "amount",
                            trade.get(
                                "size", trade.get("quantity", 0)
                            ),
                        )
                    ),
                    "timestamp": trade.get(
                        "timestamp", int(time.time() * 1000)
                    ),
                }
                formatted_trades.append(formatted_trade)

            df = pd.DataFrame(formatted_trades)

            if df.empty:
                logger.warning("No valid trades to analyze")
                return {
                    "vwap": 0.0,
                    "price_momentum": 0.0,
                    "volume_mean": 0.0,
                    "volume_std": 0.0,
                    "trade_intensity": 0.0,
                    "kyle_lambda": 0.0,
                    "roll_spread": 0.0,
                }

            # Calculate metrics with the properly formatted data
            metrics = {}
            metrics["vwap"] = (
                (df["price"] * df["amount"]).sum()
                / df["amount"].sum()
                if not df.empty
                else 0
            )
            metrics["price_momentum"] = (
                df["price"].diff().mean() if len(df) > 1 else 0
            )
            metrics["volume_mean"] = df["amount"].mean()
            metrics["volume_std"] = df["amount"].std()

            time_diff = (
                (df["timestamp"].max() - df["timestamp"].min()) / 1000
                if len(df) > 1
                else 1
            )
            metrics["trade_intensity"] = (
                len(df) / time_diff if time_diff > 0 else 0
            )

            metrics["kyle_lambda"] = self.calculate_kyle_lambda(df)
            metrics["roll_spread"] = self.calculate_roll_spread(df)

            logger.info(f"Calculated metrics: {metrics}")
            return metrics

        except Exception as e:
            logger.error(
                f"Error in calculate_tick_metrics: {str(e)}",
                exc_info=True,
            )
            # Return default metrics on error
            return {
                "vwap": 0.0,
                "price_momentum": 0.0,
                "volume_mean": 0.0,
                "volume_std": 0.0,
                "trade_intensity": 0.0,
                "kyle_lambda": 0.0,
                "roll_spread": 0.0,
            }

    def analyze_ticks(self, symbol: str) -> MarketSignal:
        if not self.rate_limit_check():
            return None

        try:
            # Fetch recent trades
            trades = self.exchange.fetch_trades(symbol, limit=100)

            # Debug the raw trades data
            logger.info(f"Fetched {len(trades)} trades for {symbol}")
            if trades:
                logger.info(f"Sample trade: {trades[0]}")

            self.tick_buffer.add(trades)
            recent_ticks = self.tick_buffer.get_latest(1000)
            metrics = self.calculate_tick_metrics(recent_ticks)

            # Only proceed with LLM analysis if we have valid metrics
            if metrics["vwap"] > 0:
                analysis_prompt = f"""
                Analyze these trading patterns for {symbol}:
                VWAP: {metrics['vwap']:.2f}
                Price Momentum: {metrics['price_momentum']:.2f}
                Trade Intensity: {metrics['trade_intensity']:.2f}
                Kyle's Lambda: {metrics['kyle_lambda']:.2f}
                
                What does this tell us about:
                1. Current market sentiment
                2. Potential price direction
                3. Trading activity patterns
                """
                llm_analysis = self.run(analysis_prompt)
            else:
                llm_analysis = "Insufficient data for analysis"

            return MarketSignal(
                timestamp=datetime.now(),
                signal_type="tick_analysis",
                source="TickDataAgent",
                data={
                    "metrics": metrics,
                    "symbol": symbol,
                    "prediction": np.sign(metrics["price_momentum"]),
                    "llm_analysis": llm_analysis,
                },
                confidence=min(metrics["trade_intensity"] / 100, 1.0)
                * 0.4
                + min(metrics["kyle_lambda"], 1.0) * 0.6,
                metadata={
                    "update_latency": (
                        datetime.now() - self.last_update
                    ).total_seconds(),
                    "buffer_size": len(self.tick_buffer.get_latest()),
                },
            )

        except Exception as e:
            logger.error(
                f"Error in tick analysis: {str(e)}", exc_info=True
            )
            return None


class LatencyArbitrageAgent(BaseMarketAgent):
    def __init__(self, api_key: str):
        system_prompt = """
        You are a Latency Arbitrage Agent specialized in detecting price discrepancies across venues.
        Monitor multiple exchanges for price differences exceeding transaction costs.
        Calculate optimal trade sizes and routes.
        """
        super().__init__(
            "LatencyArbitrageAgent", system_prompt, api_key
        )
        exchange_manager = ExchangeManager()
        self.exchanges = exchange_manager.get_all_active_exchanges()
        self.fee_structure = {
            "kraken": 0.0026,  # 0.26% taker fee
            "coinbase": 0.006,  # 0.6% taker fee
            "kucoin": 0.001,  # 0.1% taker fee
            "bitfinex": 0.002,  # 0.2% taker fee
            "gemini": 0.003,  # 0.3% taker fee
        }
        self.price_buffer = {
            ex: MarketDataBuffer(max_size=100)
            for ex in self.exchanges
        }

    def calculate_effective_prices(
        self, ticker: Dict, venue: str
    ) -> Tuple[float, float]:
        """Calculate effective prices including fees"""
        fee = self.fee_structure[venue]
        return (
            ticker["bid"] * (1 - fee),  # Effective sell price
            ticker["ask"] * (1 + fee),  # Effective buy price
        )

    def calculate_arbitrage_metrics(
        self, prices: Dict[str, Dict]
    ) -> Dict:
        opportunities = []

        for venue1 in prices:
            for venue2 in prices:
                if venue1 != venue2:
                    sell_price, _ = self.calculate_effective_prices(
                        prices[venue1], venue1
                    )
                    _, buy_price = self.calculate_effective_prices(
                        prices[venue2], venue2
                    )

                    spread = sell_price - buy_price
                    if spread > 0:
                        opportunities.append(
                            {
                                "sell_venue": venue1,
                                "buy_venue": venue2,
                                "spread": spread,
                                "return": spread / buy_price,
                                "buy_price": buy_price,
                                "sell_price": sell_price,
                            }
                        )

        return {
            "opportunities": opportunities,
            "best_opportunity": (
                max(opportunities, key=lambda x: x["return"])
                if opportunities
                else None
            ),
        }

    def find_arbitrage(self, symbol: str) -> MarketSignal:
        """
        Find arbitrage opportunities across exchanges with LLM analysis
        """
        if not self.rate_limit_check():
            return None

        try:
            prices = {}
            timestamps = {}

            for name, exchange in self.exchanges.items():
                try:
                    ticker = exchange.fetch_ticker(symbol)
                    prices[name] = {
                        "bid": ticker["bid"],
                        "ask": ticker["ask"],
                    }
                    timestamps[name] = ticker["timestamp"]
                    self.price_buffer[name].add(prices[name])
                except Exception as e:
                    logger.warning(
                        f"Error fetching {name} price: {e}"
                    )

            if len(prices) < 2:
                return None

            metrics = self.calculate_arbitrage_metrics(prices)

            if not metrics["best_opportunity"]:
                return None

            # Calculate confidence based on spread and timing
            opp = metrics["best_opportunity"]
            timing_factor = 1.0 - min(
                abs(
                    timestamps[opp["sell_venue"]]
                    - timestamps[opp["buy_venue"]]
                )
                / 1000,
                1.0,
            )
            spread_factor = min(
                opp["return"] * 5, 1.0
            )  # Scale return to confidence

            confidence = timing_factor * 0.4 + spread_factor * 0.6

            # Format price data for LLM analysis
            price_summary = "\n".join(
                [
                    f"{venue}: Bid ${prices[venue]['bid']:.2f}, Ask ${prices[venue]['ask']:.2f}"
                    for venue in prices.keys()
                ]
            )

            # Create detailed analysis prompt
            analysis_prompt = f"""
            Analyze this arbitrage opportunity for {symbol}:

            Current Prices:
            {price_summary}

            Best Opportunity Found:
            Buy Venue: {opp['buy_venue']} at ${opp['buy_price']:.2f}
            Sell Venue: {opp['sell_venue']} at ${opp['sell_price']:.2f}
            Spread: ${opp['spread']:.2f}
            Expected Return: {opp['return']*100:.3f}%
            Time Difference: {abs(timestamps[opp['sell_venue']] - timestamps[opp['buy_venue']])}ms

            Consider:
            1. Is this opportunity likely to be profitable after execution costs?
            2. What risks might prevent successful execution?
            3. What market conditions might have created this opportunity?
            4. How does the timing difference affect execution probability?
            """

            # Get LLM analysis
            llm_analysis = self.run(analysis_prompt)

            # Create comprehensive signal
            return MarketSignal(
                timestamp=datetime.now(),
                signal_type="arbitrage_opportunity",
                source="LatencyArbitrageAgent",
                data={
                    "metrics": metrics,
                    "symbol": symbol,
                    "best_opportunity": metrics["best_opportunity"],
                    "all_prices": prices,
                    "llm_analysis": llm_analysis,
                    "timing": {
                        "time_difference_ms": abs(
                            timestamps[opp["sell_venue"]]
                            - timestamps[opp["buy_venue"]]
                        ),
                        "timestamps": timestamps,
                    },
                },
                confidence=confidence,
                metadata={
                    "update_latency": (
                        datetime.now() - self.last_update
                    ).total_seconds(),
                    "timestamp_deltas": timestamps,
                    "venue_count": len(prices),
                    "execution_risk": 1.0
                    - timing_factor,  # Higher time difference = higher risk
                },
            )

        except Exception as e:
            logger.error(f"Error in arbitrage analysis: {str(e)}")
            return None


class SwarmCoordinator:
    def __init__(self, api_key: str):
        self.api_key = api_key
        self.agents = {
            "order_book": OrderBookAgent(api_key),
            "tick_data": TickDataAgent(api_key),
            "latency_arb": LatencyArbitrageAgent(api_key),
        }
        self.signal_processors = []
        self.signal_history = MarketDataBuffer(max_size=1000)
        self.running = False
        self.lock = threading.Lock()
        self.csv_writer = SignalCSVWriter()

    def register_signal_processor(self, processor):
        """Register a new signal processor function"""
        with self.lock:
            self.signal_processors.append(processor)

    def process_signals(self, signals: List[MarketSignal]):
        """Process signals through all registered processors"""
        if not signals:
            return

        self.signal_history.add(signals)

        try:
            for processor in self.signal_processors:
                processor(signals)
        except Exception as e:
            logger.error(f"Error in signal processing: {e}")

    def aggregate_signals(
        self, signals: List[MarketSignal]
    ) -> Dict[str, Any]:
        """Aggregate multiple signals into a combined market view"""
        if not signals:
            return {}

        self.signal_history.add(signals)

        aggregated = {
            "timestamp": datetime.now(),
            "symbols": set(),
            "agent_signals": {},
            "combined_confidence": 0,
            "market_state": {},
        }

        for signal in signals:
            symbol = signal.data.get("symbol")
            if symbol:
                aggregated["symbols"].add(symbol)

            agent_type = signal.source
            if agent_type not in aggregated["agent_signals"]:
                aggregated["agent_signals"][agent_type] = []
            aggregated["agent_signals"][agent_type].append(signal)

            # Update market state based on signal type
            if signal.signal_type == "order_book_analysis":
                metrics = signal.data.get("metrics", {})
                aggregated["market_state"].update(
                    {
                        "order_book_imbalance": metrics.get(
                            "depth_imbalance"
                        ),
                        "spread": metrics.get("spread"),
                        "large_orders_detected": signal.data.get(
                            "large_order_detected"
                        ),
                    }
                )
            elif signal.signal_type == "tick_analysis":
                metrics = signal.data.get("metrics", {})
                aggregated["market_state"].update(
                    {
                        "price_momentum": metrics.get(
                            "price_momentum"
                        ),
                        "trade_intensity": metrics.get(
                            "trade_intensity"
                        ),
                        "kyle_lambda": metrics.get("kyle_lambda"),
                    }
                )
            elif signal.signal_type == "arbitrage_opportunity":
                opp = signal.data.get("best_opportunity")
                if opp:
                    aggregated["market_state"].update(
                        {
                            "arbitrage_spread": opp.get("spread"),
                            "arbitrage_return": opp.get("return"),
                        }
                    )

        # Calculate combined confidence as weighted average
        confidences = [s.confidence for s in signals]
        if confidences:
            aggregated["combined_confidence"] = np.mean(confidences)

        return aggregated

    def start(self, symbols: List[str], interval: float = 1.0):
        """Start the swarm monitoring system"""
        if self.running:
            logger.warning("Swarm is already running")
            return

        self.running = True

        def agent_loop(agent, symbol):
            while self.running:
                try:
                    if isinstance(agent, OrderBookAgent):
                        signal = agent.analyze_order_book(symbol)
                    elif isinstance(agent, TickDataAgent):
                        signal = agent.analyze_ticks(symbol)
                    elif isinstance(agent, LatencyArbitrageAgent):
                        signal = agent.find_arbitrage(symbol)

                    if signal:
                        agent.signal_queue.put(signal)
                except Exception as e:
                    logger.error(
                        f"Error in {agent.agent_name} loop: {e}"
                    )

                time.sleep(interval)

        def signal_collection_loop():
            while self.running:
                try:
                    current_signals = []

                    # Collect signals from all agents
                    for agent in self.agents.values():
                        while not agent.signal_queue.empty():
                            signal = agent.signal_queue.get_nowait()
                            if signal:
                                current_signals.append(signal)

                    if current_signals:
                        # Process current signals
                        self.process_signals(current_signals)

                        # Aggregate and analyze
                        aggregated = self.aggregate_signals(
                            current_signals
                        )
                        logger.info(
                            f"Aggregated market view: {aggregated}"
                        )

                except Exception as e:
                    logger.error(
                        f"Error in signal collection loop: {e}"
                    )

                time.sleep(interval)

        # Start agent threads
        self.threads = []
        for symbol in symbols:
            for agent in self.agents.values():
                thread = threading.Thread(
                    target=agent_loop,
                    args=(agent, symbol),
                    daemon=True,
                )
                thread.start()
                self.threads.append(thread)

        # Start signal collection thread
        collection_thread = threading.Thread(
            target=signal_collection_loop, daemon=True
        )
        collection_thread.start()
        self.threads.append(collection_thread)

    def stop(self):
        """Stop the swarm monitoring system"""
        self.running = False
        for thread in self.threads:
            thread.join(timeout=5.0)
        logger.info("Swarm stopped")


def market_making_processor(signals: List[MarketSignal]):
    """Enhanced signal processor with LLM analysis integration"""
    for signal in signals:
        if signal.confidence > 0.8:
            if signal.signal_type == "arbitrage_opportunity":
                opp = signal.data.get("best_opportunity")
                if (
                    opp and opp["return"] > 0.001
                ):  # 0.1% return threshold
                    logger.info(
                        "\nSignificant arbitrage opportunity detected:"
                    )
                    logger.info(f"Return: {opp['return']*100:.3f}%")
                    logger.info(f"Spread: ${opp['spread']:.2f}")
                    if "llm_analysis" in signal.data:
                        logger.info("\nLLM Analysis:")
                        logger.info(signal.data["llm_analysis"])

            elif signal.signal_type == "order_book_analysis":
                imbalance = signal.data["metrics"]["depth_imbalance"]
                if abs(imbalance) > 0.3:
                    logger.info(
                        f"\nSignificant order book imbalance detected: {imbalance:.3f}"
                    )
                    if "llm_analysis" in signal.data:
                        logger.info("\nLLM Analysis:")
                        logger.info(signal.data["llm_analysis"])

            elif signal.signal_type == "tick_analysis":
                momentum = signal.data["metrics"]["price_momentum"]
                if abs(momentum) > 0:
                    logger.info(
                        f"\nSignificant price momentum detected: {momentum:.3f}"
                    )
                    if "llm_analysis" in signal.data:
                        logger.info("\nLLM Analysis:")
                        logger.info(signal.data["llm_analysis"])


load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")

coordinator = SwarmCoordinator(api_key)
coordinator.register_signal_processor(market_making_processor)

symbols = ["BTC/USDT", "ETH/USDT"]

logger.info(
    "Starting market microstructure analysis with LLM integration..."
)
logger.info(f"Monitoring symbols: {symbols}")
logger.info(
    f"CSV files will be written to: {os.path.abspath('market_data')}"
)

try:
    coordinator.start(symbols)
    while True:
        time.sleep(1)
except KeyboardInterrupt:
    logger.info("Gracefully shutting down...")
    coordinator.stop()