File size: 5,553 Bytes
ddfd0f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c302e2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6d9084
c302e2b
 
a6d9084
ddfd0f5
c302e2b
 
 
ddfd0f5
a6d9084
c302e2b
 
ddfd0f5
c302e2b
 
a6d9084
 
ddfd0f5
 
a6d9084
 
 
 
 
ddfd0f5
 
a6d9084
ddfd0f5
 
 
 
50b772d
 
 
c5685d4
 
 
a6d9084
5451a71
ddfd0f5
 
a6d9084
 
 
ddfd0f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# import gradio as gr
# from huggingface_hub import InferenceClient

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("harsh4733/Llama-2-7b-chat-finetune-webglm")


# def respond(
#     message,
#     history: list[tuple[str, str]],
#     system_message,
#     max_tokens,
#     temperature,
#     top_p,
# ):
#     messages = [{"role": "system", "content": system_message}]

#     for val in history:
#         if val[0]:
#             messages.append({"role": "user", "content": val[0]})
#         if val[1]:
#             messages.append({"role": "assistant", "content": val[1]})

#     messages.append({"role": "user", "content": message})

#     response = ""

#     for message in client.chat_completion(
#         messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         token = message.choices[0].delta.content

#         response += token
#         yield response

# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
#         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(
#             minimum=0.1,
#             maximum=1.0,
#             value=0.95,
#             step=0.05,
#             label="Top-p (nucleus sampling)",
#         ),
#     ],
# )

# import gradio as gr
# from transformers import pipeline

# def chat_with_model(question, prompt, system_message, max_tokens, temperature, top_p):
#     prompt_template = f"<s>[INST] <<SYS>>\n{system_message} <</SYS>> {prompt} [/INST]"

#     pipe = pipeline(
#         task="text-generation",
#         model="harsh4733/Llama-2-7b-chat-finetune-webglm",
#         tokenizer="harsh4733/Llama-2-7b-chat-finetune-webglm",
#         max_length=max_tokens,
#         temperature=temperature,
#         top_p=top_p,
#     )

#     result = pipe(prompt_template)
#     return result[0]['generated_text']

# def respond(
#     question,
#     prompt,
#     system_message,
#     max_tokens,
#     temperature,
#     top_p,
# ):
#     response = chat_with_model(question, prompt, system_message, max_tokens, temperature, top_p)
#     return response

# # Define Gradio interface
# demo = gr.Interface(
#     fn=respond,
#     inputs=[
#         gr.Textbox(value="What is a large language model?", label="Question"),
#         gr.Textbox(value="You are a helpful assistant that provides answers to the questions given based on the references provided to you regarding the question.", label="System message"),
#         gr.Textbox(value="You are a friendly Chatbot.", label="Prompt"),
#         gr.Slider(minimum=1, maximum=2048, value=512, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, label="Temperature"),
#         gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
#     ],
#     outputs=gr.Textbox(label="Response"),
#     title="Chat with Large Language Model",
#     description="Interact with a large language model to generate responses based on your input.",
# )

# if __name__ == "__main__":
#     demo.launch()


# if __name__ == "__main__":
#     demo.launch()

import gradio as gr
from transformers import TFAutoModelForCausalLM, AutoTokenizer
import tensorflow as tf

def chat_with_model(question, prompt, system_message, max_tokens, temperature, top_p):
    tokenizer = AutoTokenizer.from_pretrained("harsh4733/Llama-2-7b-chat-finetune-webglm")
    model = TFAutoModelForCausalLM.from_pretrained("harsh4733/Llama-2-7b-chat-finetune-webglm")

    prompt_template = f"<s>[INST] <<SYS>>\n{system_message} <</SYS>> {prompt} [/INST]"

    input_ids = tokenizer.encode(prompt_template, return_tensors="tf", max_length=512, truncation=True)
    output = model.generate(input_ids, max_length=max_tokens, temperature=temperature, top_p=top_p, num_return_sequences=1)

    response = tokenizer.decode(output[0], skip_special_tokens=True)
    return response

def respond(
    question,
    prompt,
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    response = chat_with_model(question, prompt, system_message, max_tokens, temperature, top_p)
    return response

# Define Gradio interface
demo = gr.Interface(
    fn=respond,
    inputs=[
        gr.Textbox(value="What is a large language model?", label="Question"),
        gr.Textbox(value="You are a helpful assistant that provides answers to the questions given based on the references provided to you regarding the question.", label="System message"),
        gr.Textbox(value="You are a friendly Chatbot.", label="Prompt"),
        gr.Slider(minimum=1, maximum=2048, value=512, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
    ],
    outputs=gr.Textbox(label="Response"),
    title="Chat with Large Language Model",
    description="Interact with a large language model to generate responses based on your input.",
)

if __name__ == "__main__":
    demo.launch()