File size: 9,204 Bytes
810485e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56ab875
810485e
 
 
 
 
 
 
 
 
56ab875
810485e
 
 
 
 
 
 
 
56ab875
810485e
 
 
 
 
 
 
 
 
 
 
56ab875
810485e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56ab875
810485e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56ab875
810485e
 
56ab875
810485e
 
 
 
56ab875
810485e
 
 
 
 
 
 
 
 
 
 
 
56ab875
 
 
 
 
 
 
 
810485e
 
 
56ab875
810485e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
from dotenv import load_dotenv

import torch
import numpy as np
import cv2
from PIL import Image

from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel

class ArchIntelligent:
    def __init__(self):
        # Get private variables from enviroment
        load_dotenv()
        
    
    
        self.hf_token = os.getenv("HF_TOKEN")
        self.style_models = os.getenv("STYLE_MODELS")
        self.functional_models= os.getenv("FUNCTION_MODELS")
        self.enhancement= os.getenv("REALISM_ENHANCE")
        self.controlnet_model= os.getenv("CONTROLNET")
        self.base_model = os.getenv("BASEMODEL")
        
        self.model_config = {}
        
        # Configure ControlNet model
        controlnet = ControlNetModel.from_pretrained(
                                                    self.controlnet_model,
                                                    torch_dtype= torch.float16,
                                                    cache_dir= r"huggingface_cache",
                                                    token= self.hf_token,
                                                    variant= 'fp16',
                                                    )
        
        self.pipeline= StableDiffusionXLControlNetPipeline.from_pretrained(
                                                            self.base_model,
                                                            controlnet= controlnet,
                                                            torch_dtype= torch.float16,
                                                            cache_dir= r"huggingface_cache",
                                                            token= self.hf_token,
                                                            variant= 'fp16',
                                                            )

        
        #  Enable memory-efficient optimizations
        try:
            self.pipeline.enable_xformers_memory_efficient_attention()
            self.pipeline.enable_vae_slicing()
            self.pipeline.enable_sequential_cpu_offload()

            print(f"xFormers enabled\nVAE Slicing mode enabled\nSequential CPU Offload enabled!")
        except Exception as e:
            print(f"Warning: Some optimizations failed: {e}")
            


            

    def img2canny(self, input_img):
        """

        Processing user's condition image into edge map

        

        Parameters

            input_img : PIL image



        Returns

           PIL image

        """
        
        np_image = np.array(input_img)
        
        # Convert the image into a grayscale image then extract edge map
        canny = cv2.cvtColor(np_image, cv2.COLOR_RGB2GRAY)
        canny = cv2.resize(canny, (1024, 1024))
        canny = cv2.Canny(canny, 100, 200)
        
        canny = Image.fromarray(canny)
        
        return canny        

    def process_config(self, config: dict):
        
        style_dict = {"Modern": "Modernism", "Minimalism": "Minimalism", "Art Deco": "ArtDeco",
                   "Art Nouveau": "ArtNouveau", "Baroque": "Baroque", "Brutalist": "Brutalist",
                   "Classical": "Classical", "Neo-Classical": "Neo-Classical", "Cyberpunk": "Cyberpunk",
                   "Deconstructivism": "Deconstructivism", "Futurism": "Futurism", "Gothic": "Gothic",
                   "Neo-Futurism": "Neo-Futurism", "Sustainable": "Sustainable", "Victorian": "Victorian"}
        
        functional_dict = {"Residential": "Modern", "Villa": "Modern", "Office": "Office", "Skyscraper": "SkyScraper",
                           "Hotel": "Hotel", "School Campus": "SchoolCampus", "Farmhouse": "Farmhouse", "Playground": "PlayGround",
                           "Park": "Park", "Apartment": "Apartment", "Hospital": "Hospital", "Kindergarten": "KinderGarten",
                           "Church": "Church", "Container": "Container", "Bridge": "Bridge", "Resort": "Resort", "Airport": "Airport",
                           "Factory": "Factory", "Stadium": "Stadium", "Temple": "Temple", "Tree House": "TreeHouse"}
        
        
        styles= config['style_names']
        functional= config['functional_names']
        
        season = config['season']
        landscape= config['landscape']
        weather= config['weather']
        day= config['time_of_day']
        
        config['posprompt_2'] = f"(((realistic))), (({styles})), (({functional})), ({landscape}), ({season}), ({weather}), ({day}), (high quality),\

                                    (high resolution), 4k render, detail, beautiful, cinematic lighting, hyper-realistic"
                                    
        config['negprompt_2'] = "((blurry)), details are low, overlapping, (grainy), multiple angles, deformed structures, unnatural, unrealistic, cartoon, \

                                 anime, (painting), drawing, sketch, gibberish text, logo, noise, jpeg artifacts, mutation, (((worst quality))), ((low quality)), (((low resolution))),\

                                 messy, watermark, signature, cut off, low contrast, underexposed, overexposed, draft, disfigured, ugly, tiling, out of frame"
                                 
        config["LoRA_style"] = style_dict[styles]
        config["LoRA_functional"] = functional_dict[functional]                         
        config['adapter_weights'] = [1.0, 1.0, 0.8]
           
        
        self.model_config = config
    

    def generate(self):
        """

        Generate building image using user's input arguments 

        """
        
        # Get user's prompts from dictionary
        first_prompt = self.model_config["posprompt_1"]
        second_prompt = self.model_config["posprompt_2"]
        first_negprompt = self.model_config["negprompt_1"]
        second_negprompt = self.model_config["negprompt_2"]
        
        # Get user's image
        input_image = self.model_config['image']
        
        # Get ControlNet conditioning scale value
        controlnet_condition = self.model_config["condition_scale"]
        
        # Get guidance scale value
        guidance_scale = self.model_config["guidance"]
        
        # Get render speed
        render_speed = self.model_config["render_speed"]
        
        # Get LoRA weight's name and their corresponding adapter weights
        LoRA_style_names = self.model_config['LoRA_style']
        LoRA_functional_names = self.model_config['LoRA_functional']
        LoRA_enhancement_names = 'Realism'
        adapter_weights = self.model_config['adapter_weights']
        
        LoRA_names = [LoRA_style_names, LoRA_functional_names, LoRA_enhancement_names]
        
        self.pipeline.unload_lora_weights()
        print(f"\n\nUNLOADED LORA WEIGHTS\n\n")
        
        os.environ['HF_HOME'] = r"huggingface_cache"        
        self.pipeline.load_lora_weights(
                                        self.style_models,
                                        weight_name= f"{LoRA_style_names}.safetensors", 
                                        adapter_name= LoRA_style_names
                                        )
    
        
        self.pipeline.load_lora_weights(
                                        self.functional_models,
                                        weight_name= f"{LoRA_functional_names}.safetensors", 
                                        adapter_name= LoRA_functional_names
                                        )
        
        self.pipeline.load_lora_weights(
                                        self.enhancement,
                                        weight_name= f"realistic.safetensors",
                                        adapter_name= LoRA_enhancement_names
                                        )
        
        print(f"Finished loadded 3 LoRA weights {LoRA_style_names}, {LoRA_functional_names} and {LoRA_enhancement_names}")
    

        self.pipeline.set_adapters(adapter_names= LoRA_names, adapter_weights= adapter_weights)
        print(f"Adapted 3 lora weights")
        
        # Transform the image into a depth map that is compatible with ControlNet   
        conditional_image = self.img2canny(input_image)
        
        # Setup the pipeline then generate image
        image = self.pipeline(
                            prompt= first_prompt,
                            prompt_2= second_prompt,
                            negative_prompt= first_negprompt,
                            negative_prompt_2= second_negprompt,
                            
                            image= conditional_image,
                            controlnet_conditioning_scale= controlnet_condition,
                            num_inference_steps= render_speed,
                            guidance_scale= guidance_scale
                             ).images[0]
        
        return image

    
if __name__ == '__main__':
    print("Loading")
    pipe = ArchIntelligent()
    print("Finished")