File size: 23,561 Bytes
0f5c20a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
import os
import copy
from dataclasses import dataclass
import argparse
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import time
import gc
import ast
from tqdm import tqdm
import json
import shutil
import sys
from glob import glob

import polars as pl
import polars
from sklearn.model_selection import KFold
from sklearn.metrics import log_loss, accuracy_score
from sklearn.metrics.pairwise import cosine_similarity
from scipy.special import softmax

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torch import Tensor
from torch.optim.lr_scheduler import OneCycleLR
from torch.nn.utils import clip_grad_norm_

# from datasets import Dataset, DatasetDict, load_dataset
import transformers
import datasets
import sentence_transformers
from transformers import (
    BitsAndBytesConfig,
    AutoModelForCausalLM,
    AutoModel,
    AutoTokenizer,

    PreTrainedTokenizerFast,
    PreTrainedTokenizerBase, 
    Trainer,
    TrainingArguments,
    DataCollatorWithPadding,
    DataCollatorForSeq2Seq,
)
from transformers.modeling_outputs import CausalLMOutputWithPast
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, TaskType, PeftModel
from trl import SFTTrainer, DataCollatorForCompletionOnlyLM
from accelerate import Accelerator

# os.environ['NCCL_P2P_DISABLE'] = '1' # RTX 4000 doesn't support
# os.environ['NCCL_IB_DISABLE'] = '1' # RTX 4000 doesn't support

from utils import seed_torch, current_date_time, get_timediff
from utils import load_yaml, simple_namespace, write_to_summary_log, init_logger
from utils import mapk, last_token_pool
from loss_utils import compute_no_in_batch_neg_loss

parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='train_retriever_v0.yaml')
parser.add_argument('--rank', type=str, default="0,1")
args = parser.parse_args()

cfg = load_yaml(args.cfg)
cfg = simple_namespace(cfg)
if args.rank:
    cfg.general.rank = args.rank
print(f"cfg.general.rank: {cfg.general.rank}")
os.environ['CUDA_VISIBLE_DEVICES'] = cfg.general.rank
os.environ['TOKENIZERS_PARALLELISM'] = 'true'

base_dir = "."
input_dir = f"{base_dir}/input"
comp_dir = f"{input_dir}/eedi-mining-misconceptions-in-mathematics"
output_dir = f"{base_dir}/output"
summary_log_path = f"{output_dir}/summary_retriever.log"

seed_torch(cfg.general.seed)
cur_time = current_date_time()
cur_time_abbr = cur_time.replace("-", "").replace(":", "").replace(" ", "")[4:12]
output_dir = f"{output_dir}/{cur_time_abbr}_retriever"
os.makedirs(output_dir, exist_ok=True)
LOGGER = init_logger(f'{output_dir}/train.log')
shutil.copy(args.cfg, f"{output_dir}/{args.cfg}")


num_gpus = torch.cuda.device_count()
LOGGER.info(f"可用的 GPU 数量: {num_gpus}")

if cfg.general.report_to == "wandb":
    import wandb
    wandb.login()
    wandb.init(project=f"{cfg.model.model_name.split('/')[-1]}", name=cur_time_abbr)


LOGGER.info(f"polars=={polars.__version__}")
LOGGER.info(f"torch=={torch.__version__}")
LOGGER.info(f"transformers=={transformers.__version__}")
LOGGER.info(f"datasets=={datasets.__version__}")
LOGGER.info(f"sentence_transformers=={sentence_transformers.__version__}")
LOGGER.info(f"")

# %% ==================  Read data =======================
if os.path.exists(f"{comp_dir}/{cfg.data.long_df_pq}"):
    long_df = pd.read_parquet(f"{comp_dir}/{cfg.data.long_df_pq}")
    LOGGER.info(f"load long_df, explode_df from parquet file.")
    misconception_mapping_df = pl.read_csv(f"{comp_dir}/misconception_mapping.csv")
    misconception_name = misconception_mapping_df["MisconceptionName"].to_list()
    misconception_dict = misconception_mapping_df.to_pandas().set_index('MisconceptionId')['MisconceptionName'].to_dict()
    LOGGER.info(f"len(misconception_mapping_df): {len(misconception_mapping_df)}")
else:
    train_df = pl.read_csv(f"{comp_dir}/train_folds.csv")
    LOGGER.info(f"len(train_df): {len(train_df)}")
    misconception_mapping_df = pl.read_csv(f"{comp_dir}/misconception_mapping.csv")
    misconception_name = misconception_mapping_df["MisconceptionName"].to_list()
    misconception_dict = misconception_mapping_df.to_pandas().set_index('MisconceptionId')['MisconceptionName'].to_dict()
    LOGGER.info(f"len(misconception_mapping_df): {len(misconception_mapping_df)}")
    LOGGER.info(f"")

    # 定义常用的列名列表
    common_col = [
        "QuestionId",
        "ConstructName",
        "SubjectName",
        "QuestionText",
        "CorrectAnswer",
        "fold",
    ]

    # 对训练集数据进行处理,转换为长表格式,并添加需要的列
    long_df = (
        train_df
        # 选择需要的列,包括common_col和所有的Answer[A-D]Text列
        .select(
            pl.col(common_col + [f"Answer{alpha}Text" for alpha in ["A", "B", "C", "D"]])
        )
        # 获取 CorrectAnswer 的 Text,创建新列 CorrectAnswerText
        .with_columns(
            pl.when(pl.col("CorrectAnswer") == "A").then(pl.col("AnswerAText"))
            .when(pl.col("CorrectAnswer") == "B").then(pl.col("AnswerBText"))
            .when(pl.col("CorrectAnswer") == "C").then(pl.col("AnswerCText"))
            .when(pl.col("CorrectAnswer") == "D").then(pl.col("AnswerDText"))
            .otherwise(None)
            .alias("CorrectAnswerText")
        )
        # 使用unpivot函数将宽表转换为长表,将Answer[A-D]Text列展开
        .unpivot(
            index=common_col+["CorrectAnswerText"], # 保持这些列不变
            variable_name="AnswerType", # 展开列的名称存储在新列AnswerType中
            value_name="AnswerText",    # 展开列的值存储在新列AnswerText中
        )
        # 添加新列
        .with_columns(
            # 将ConstructName、SubjectName、QuestionText和AnswerText列拼接成一个字符串,存储在AllText列中
            pl.concat_str(
                [
                    '### Construct\n' +  pl.col("ConstructName"),
                    '\n### Subject\n' + pl.col("SubjectName"),
                    '\n### Question\n'+ pl.col("QuestionText"),
                    '\n### Correct Answer\n' + pl.col("CorrectAnswerText"),
                    '\n### Wrong Answer\n' + pl.col("AnswerText"),
                ],
                separator="",
            ).alias("AllText"),
            # 从AnswerType列中提取选项字母(A-D),存储在AnswerAlphabet列中
            pl.col("AnswerType").str.extract(r"Answer([A-D])Text$").alias("AnswerAlphabet"),
        )
        # 创建QuestionId_Answer列,将QuestionId和AnswerAlphabet拼接,形成唯一标识
        .with_columns(
            pl.concat_str(
                [pl.col("QuestionId"), pl.col("AnswerAlphabet")], separator="_"
            ).alias("QuestionId_Answer"),
        )
        # 按照QuestionId_Answer进行排序
        .sort("QuestionId_Answer")
    )

    # 对误解映射数据进行处理,转换为长表格式,并添加需要的列
    misconception_mapping_df_long = (
        train_df.select(
            # 选择需要的列,包括common_col和所有的Misconception[A-D]Id列
            pl.col(
                common_col + [f"Misconception{alpha}Id" for alpha in ["A", "B", "C", "D"]]
            )
        )
        # 使用unpivot函数将宽表转换为长表,将Misconception[A-D]Id列展开
        .unpivot(
            index=common_col,                # 保持这些列不变
            variable_name="MisconceptionType", # 展开列的名称存储在MisconceptionType中
            value_name="MisconceptionId",      # 展开列的值存储在MisconceptionId中
        )
        # 从MisconceptionType列中提取选项字母(A-D),存储在AnswerAlphabet列中
        .with_columns(
            pl.col("MisconceptionType")
            .str.extract(r"Misconception([A-D])Id$")
            .alias("AnswerAlphabet"),
        )
        # 创建QuestionId_Answer列,将QuestionId和AnswerAlphabet拼接,形成唯一标识
        .with_columns(
            pl.concat_str(
                [pl.col("QuestionId"), pl.col("AnswerAlphabet")], separator="_"
            ).alias("QuestionId_Answer"),
        )
        # 按照QuestionId_Answer进行排序
        .sort("QuestionId_Answer")
        # 选择需要的列
        .select(pl.col(["QuestionId_Answer", "MisconceptionId"]))
        # 将MisconceptionId列的数据类型转换为Int64
        .with_columns(pl.col("MisconceptionId").cast(pl.Int64))
    )

    long_df = long_df.join(misconception_mapping_df_long, on="QuestionId_Answer")
    LOGGER.info(f"long_df len (has nan): {len(long_df)}")

    # =================== Dataset ====================
    last_oof_df = pd.read_csv(f"{input_dir}/{cfg.data.oof_csv}")[["QuestionId_Answer", "preds_all_mm_ids"]]
    last_oof_df["preds_all_mm_ids"] = last_oof_df["preds_all_mm_ids"].apply(ast.literal_eval)
    last_oof_df["pred_mm_id"] = last_oof_df["preds_all_mm_ids"].apply(lambda x: x[:cfg.data.top_nums])
    last_oof_df = pl.DataFrame(last_oof_df)

    long_df = long_df.join(last_oof_df, on="QuestionId_Answer", how="left")


    long_df = long_df.to_pandas()
    LOGGER.info(f"{long_df.columns = }")
    # 只选择 MisconceptionId 不为NaN 的数据
    long_df = long_df[~pd.isna(long_df["MisconceptionId"])].reset_index(drop=True)
    long_df["MisconceptionId"] = long_df["MisconceptionId"].astype(int)
    long_df = long_df[["QuestionId_Answer", "AllText", "MisconceptionId", "preds_all_mm_ids", "fold"]]
    LOGGER.info(f"long_df shape (after del nan): {long_df.shape}")
    # 保存数据
    long_df.to_parquet(f"{comp_dir}/{cfg.data.long_df_pq}")



def adjust_passage_ids(row, pred_col, topk=25):
    misconception_id = row['MisconceptionId']
    
    if isinstance(row[pred_col], list):
        predict_list = row[pred_col]
    else:
        predict_list = row[pred_col].tolist()
    
    # 如果MisconceptionId在 preds_all_mm_ids 中,调整到最前面
    if misconception_id in predict_list:
        predict_list.remove(misconception_id)
        predict_list.insert(0, misconception_id)
    else:
        # 如果不在,插入到最前面并去掉最后一个元素
        predict_list.insert(0, misconception_id)
        predict_list.pop()
    
    predict_list = predict_list[:topk]
    
    return predict_list

def convert_to_text(passages_list):
    return [misconception_dict.get(misconception_id, '') for misconception_id in passages_list]

long_df['passage_ids'] = long_df.apply(lambda row: adjust_passage_ids(row, pred_col="preds_all_mm_ids", topk=cfg.data.top_nums), axis=1)
long_df['passage_texts'] = long_df['passage_ids'].apply(convert_to_text)

# AllText token len: max:404, median: 91
# MisconceptionName token len: max: 45, median: 14
# pred_mm_name token len: max: 45, median: 14

if cfg.data.full_train_data:
    tra_long_df = long_df
    val_long_df = long_df
    LOGGER.info(f"full tra_long_df, len(long_df): {len(long_df)}")
else:
    tra_long_df = long_df[long_df["fold"] != cfg.data.fold_idx].reset_index(drop=True)
    val_long_df = long_df[long_df["fold"] == cfg.data.fold_idx].reset_index(drop=True)
    LOGGER.info(f"len(tra_long_df): {len(tra_long_df)}, len(val_long_df): {len(val_long_df)}, val rate: {len(val_long_df) / (len(tra_long_df)+len(val_long_df)):.1%}")


# %% ========= Tokenizer and Dataset ========= 
def add_suffix(text, suffix_text, is_query):
    text = f"{suffix_text}{text}"
    text = text.strip()
    if is_query:
        text = f"{text}\n<response>"
    return text

class QPDataset(Dataset):
    def __init__(self, tra_long_df, shuffle=True):
        # train_df_long to data
        if cfg.general.debug:
            tra_long_df = tra_long_df.sample(frac=cfg.general.debug_size, random_state=cfg.general.seed).reset_index(drop=True)
            LOGGER.info(f"debug mode, len(tra_long_df): {len(tra_long_df)}")

        self.queries = tra_long_df['AllText'].tolist()
        self.passages = tra_long_df['passage_texts'].tolist()

        if shuffle:
            list_len = len(self.queries)
            indices = np.arange(list_len)
            np.random.shuffle(indices)
            self.queries = [self.queries[i] for i in indices]
            self.passages = [self.passages[i] for i in indices]

        self.queries = [add_suffix(x, cfg.data.query_prefix, is_query=True) for x in self.queries]
        self.passages = [
            [add_suffix(x, cfg.data.mis_prefix, is_query=False) for x in passage]
            for passage in self.passages
        ]
        assert len(self.queries) == len(self.passages), f"{len(self.queries) = } != {len(self.passages) = }"

    def __len__(self):
        return len(self.queries)

    def __getitem__(self, idx):
        return {
            'queries': self.queries[idx],
            'passages': self.passages[idx],
        }

def collate_fn(batch):
    queries =  [item['queries'] for item in batch]
    passages = [item['passages'] for item in batch]
    return {
        'queries': queries,
        'passages': passages
    }

if cfg.data.peek_dataset:
    tmp_qp_dataset = QPDataset(tra_long_df)
    one_sample = tmp_qp_dataset[0]
    LOGGER.info(f"\nQUERY:\n{one_sample['queries']}")
    LOGGER.info(f"\nGT:\n{one_sample['passages'][0]}")
    LOGGER.info(f"\nPASSAGES:\n{one_sample['passages']}")


# Initialize tokenizer
tokenizer = AutoTokenizer.from_pretrained(f"{input_dir}/{cfg.model.model_name}", trust_remote_code=True)

# %% ========= Model =========
layers_num = 42
lora_config = LoraConfig(
    r=cfg.model.lora_r,
    lora_alpha=cfg.model.lora_alpha,
    lora_dropout=cfg.model.lora_dropout,
    bias=cfg.model.lora_bias,
    task_type=TaskType.FEATURE_EXTRACTION, # TaskType.FEATURE_EXTRACTION TaskType.CAUSAL_LM
    target_modules=cfg.model.lora_target_modules,
    # layers_to_transform=[i for i in range(layers_num) if i >= cfg.model.freeze_layers],
)

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16 if cfg.training.amp=="bf16" else torch.float16,
    )

model = AutoModel.from_pretrained(
    f"{input_dir}/{cfg.model.model_name}",
    torch_dtype=torch.bfloat16 if cfg.training.amp=="bf16" else torch.float16,
    device_map="auto",
    trust_remote_code=True,
    quantization_config=bnb_config,
    # attn_implementation="flash_attention_2",
)

model.config.use_cache = False

model = get_peft_model(model, lora_config)

model.print_trainable_parameters()

# %% ========= Training =========
def valid_func(model, tokenizer, df, query_prefix, mis_prefix, mode="valid"):
    model.eval()
    batch_size = cfg.training.per_device_eval_batch_size

    query_list = df["AllText"].to_list()
    query_result = []
    for i in tqdm(range(0, len(query_list), batch_size)):
        batch_query_list = query_list[i:i+batch_size]
        batch_query_list = [add_suffix(x, query_prefix, is_query=True) for x in batch_query_list]
        query_encodings = tokenizer(
            batch_query_list,
            padding=True,
            truncation=True,
            return_tensors='pt',
            max_length=cfg.model.query_max_length,
        )
        input_ids = query_encodings['input_ids'].to(model.device)
        attention_mask = query_encodings['attention_mask'].to(model.device)
        with torch.no_grad():
            outputs = model(input_ids=input_ids, attention_mask=attention_mask) 
            embeddings = last_token_pool(outputs.last_hidden_state, attention_mask)
            embeddings = F.normalize(embeddings, p=2, dim=1) # shape: (4370, 4096)
        query_result.append(embeddings)
        torch.cuda.empty_cache()
    query_embeddings = torch.cat(query_result, dim=0)


    misconception_result = []
    for i in tqdm(range(0, len(misconception_name), batch_size)):
        batch_misconception_name = misconception_name[i:i+batch_size]
        batch_misconception_name = [add_suffix(x, mis_prefix, is_query=False) for x in batch_misconception_name]
        misconception_encodings = tokenizer(
                    batch_misconception_name,
                    padding=True,
                    truncation=True,
                    return_tensors='pt',
                    max_length=cfg.model.mis_max_length,
                )
        input_ids = misconception_encodings['input_ids'].to(model.device)
        attention_mask = misconception_encodings['attention_mask'].to(model.device)
        with torch.no_grad():
            outputs = model(input_ids=input_ids, attention_mask=attention_mask) 
            embeddings = last_token_pool(outputs.last_hidden_state, attention_mask)
            embeddings = F.normalize(embeddings, p=2, dim=1) # shape: (2587, 4096)
        misconception_result.append(embeddings)
        torch.cuda.empty_cache()
    misconception_embeddings = torch.cat(misconception_result, dim=0)


    scores = (query_embeddings @ misconception_embeddings.T) * 100 # shape: (len(df), 2587)
    scores = scores.float()
    scores = scores.cpu().numpy()
    LOGGER.info(f"{scores.shape = }")
    # 获取误解id的index,按照score排序
    preds_all_mm_ids = np.argsort(-scores, axis=1)
    preds_top25_mm_ids = preds_all_mm_ids[:, :25]

    df["preds_all_mm_ids"] = preds_all_mm_ids.tolist()
    df["preds_top25_mm_ids"] = preds_top25_mm_ids.tolist()

    return df




def encode_texts(model, tokenizer, texts, max_length):
    if type(texts[0]) == list:
        # shape: (batch_size, group_size) -> (batch_size * group_size)
        texts = [text for texts_ in texts for text in texts_]
    # 进行分词
    encodings = tokenizer(
        texts,
        padding=True,
        truncation=True,
        return_tensors='pt',
        max_length=max_length,
    )
    input_ids = encodings['input_ids'].to(model.device)
    attention_mask = encodings['attention_mask'].to(model.device)

    outputs = model(input_ids=input_ids, attention_mask=attention_mask)
    # 获取嵌入表示
    # padding_side='left'
    embeddings = last_token_pool(outputs.last_hidden_state, attention_mask)
    # embeddings = outputs[0][:, -1, :]
    return embeddings



def train_func(model, val_long_df):
    train_dataset = QPDataset(tra_long_df)
    train_dataloader = DataLoader(
        train_dataset,
        batch_size=cfg.training.per_device_train_batch_size,
        shuffle=True,
        collate_fn=collate_fn
    )

    accelerator = Accelerator()
    device = accelerator.device

    if cfg.training.optim_type == "adamw":
        optimizer = torch.optim.AdamW(model.parameters(), lr=cfg.training.lr, weight_decay=cfg.training.weight_decay)

    scheduler = OneCycleLR(
        optimizer,
        max_lr=cfg.training.lr,
        total_steps=cfg.training.n_epochs * len(train_dataloader) // cfg.training.gradient_accumulation_steps,
        pct_start=cfg.training.one_cycle_pct_start,
        anneal_strategy='cos', 
        div_factor=25.0,
        final_div_factor=100,
    )

    model, optimizer, train_dataloader = accelerator.prepare(
        model, optimizer, train_dataloader
    )

    losses = []
    lrs = []
    for epoch in range(cfg.training.n_epochs):
        model.train()  
        step = 0
        bar = tqdm(train_dataloader, desc=f'Epoch {epoch+1}/{cfg.training.n_epochs}', total=len(train_dataloader), ncols=100)
        for batch_idx, batch in enumerate(bar):
            step += 1

            queries = batch['queries']
            passages = batch['passages']

            # 编码文本 
            queries_embeddings = encode_texts(model, tokenizer, queries, max_length=cfg.model.query_max_length)
            passages_embeddings = encode_texts(model, tokenizer, passages, max_length=cfg.model.mis_max_length)

            queries_embeddings = F.normalize(queries_embeddings, p=2, dim=1)
            passages_embeddings = F.normalize(passages_embeddings, p=2, dim=1)
            # queries_embeddings.shape = [4, 2048]
            # passages_embeddings.shape = [60, 2048] , 每个query对应15个passage, 其中第0个是正确答案, 其余14个是错误答案

            local_scores, loss = compute_no_in_batch_neg_loss(queries_embeddings, passages_embeddings, temperature=cfg.training.temperature)            
            loss = loss / cfg.training.gradient_accumulation_steps
            accelerator.backward(loss)
            clip_grad_norm_(model.parameters(), max_norm=10.0)
            if (batch_idx + 1) % cfg.training.gradient_accumulation_steps == 0:
                optimizer.step()
                optimizer.zero_grad()
                scheduler.step()
                losses.append(loss.item())
                lrs.append(optimizer.param_groups[0]["lr"])

            bar.set_postfix(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])

        avg_loss = np.mean(losses[-10:])
        print(f"Epoch {epoch+1}/{cfg.training.n_epochs}, Average Loss: {avg_loss:.4f}")

        torch.cuda.empty_cache()
        gc.collect()

        # Valid
        train_oof_df = valid_func(model, tokenizer, tra_long_df, cfg.data.query_prefix, cfg.data.mis_prefix, mode="train")
        oof_df = valid_func(model, tokenizer, val_long_df, cfg.data.query_prefix, cfg.data.mis_prefix, mode="valid")

        mapk_score, recall_scores = get_result(oof_df)
        log_str = f"MAP@25: {mapk_score:.4f}\n"
        log_str += " | ".join([f"R@{k}: {recall_scores[f'recall@{k}']:.4f}" for k in [1, 10, 25, 50, 100]])
        LOGGER.info(log_str)

    # 画出损失曲线
    move_windows = 3
    ma_losses = pd.Series(losses).rolling(window=move_windows, min_periods=1).mean()
    plt.plot(ma_losses)
    plt.xlabel('Step')
    plt.ylabel('Loss')
    plt.title('Training Loss')
    plt.savefig(f"{output_dir}/training_loss.png")

    # 清空之前的plt
    plt.clf()
    
    # 画出学习率曲线
    plt.plot(lrs)
    plt.xlabel('Step')
    plt.ylabel('Learning Rate')
    plt.title('Learning Rate')
    plt.savefig(f"{output_dir}/learning_rate.png")

    # save model to disk
    model.save_pretrained(f"{output_dir}/{cur_time_abbr}adapetermodel")
    tokenizer.save_pretrained(f"{output_dir}/{cur_time_abbr}adapetermodel")
    LOGGER.info("save adapeter model.")

    return train_oof_df, oof_df


# ======================= Run ==========================
def get_result(oof_df):
    # Compute MAP@25
    label = oof_df["MisconceptionId"].tolist()
    label = [[i] for i in label]
    preds = oof_df["preds_top25_mm_ids"].tolist()
    mapk_score = mapk(label, preds)

    # Compute recalls at various cutoffs
    ks = [1, 10, 25, 50, 100]
    recall_scores = {}
    ground_truth_ids = oof_df["MisconceptionId"].tolist()
    all_predictions = oof_df["preds_all_mm_ids"].tolist()  # Each is a list of predicted MisconceptionIds
    
    for k in ks:
        num_correct = sum([1 if gt_id in preds[:k] else 0 for gt_id, preds in zip(ground_truth_ids, all_predictions)])
        recall = num_correct / len(oof_df)
        recall_scores[f"recall@{k}"] = recall
    return mapk_score, recall_scores

start_time = time.time()
train_oof_df, oof_df = train_func(model, val_long_df)
train_oof_df.to_csv(f"{output_dir}/train_oof_df.csv", index=False)
oof_df.to_csv(f"{output_dir}/oof_df.csv", index=False)

mapk_score, recall_scores = get_result(oof_df)


result_log = f"MAP@25: {mapk_score:.4f}\n"
result_log += " | ".join([f"R@{k}: {recall_scores[f'recall@{k}']:.4f}" for k in [1, 10, 25, 50, 100]])
result_log += f"\nElapsed time: {get_timediff(start_time, time.time())}"

LOGGER.info(result_log)
write_to_summary_log(summary_log_path, result_log)