Spaces:
Sleeping
Sleeping
File size: 23,561 Bytes
0f5c20a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
import os
import copy
from dataclasses import dataclass
import argparse
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import time
import gc
import ast
from tqdm import tqdm
import json
import shutil
import sys
from glob import glob
import polars as pl
import polars
from sklearn.model_selection import KFold
from sklearn.metrics import log_loss, accuracy_score
from sklearn.metrics.pairwise import cosine_similarity
from scipy.special import softmax
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torch import Tensor
from torch.optim.lr_scheduler import OneCycleLR
from torch.nn.utils import clip_grad_norm_
# from datasets import Dataset, DatasetDict, load_dataset
import transformers
import datasets
import sentence_transformers
from transformers import (
BitsAndBytesConfig,
AutoModelForCausalLM,
AutoModel,
AutoTokenizer,
PreTrainedTokenizerFast,
PreTrainedTokenizerBase,
Trainer,
TrainingArguments,
DataCollatorWithPadding,
DataCollatorForSeq2Seq,
)
from transformers.modeling_outputs import CausalLMOutputWithPast
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, TaskType, PeftModel
from trl import SFTTrainer, DataCollatorForCompletionOnlyLM
from accelerate import Accelerator
# os.environ['NCCL_P2P_DISABLE'] = '1' # RTX 4000 doesn't support
# os.environ['NCCL_IB_DISABLE'] = '1' # RTX 4000 doesn't support
from utils import seed_torch, current_date_time, get_timediff
from utils import load_yaml, simple_namespace, write_to_summary_log, init_logger
from utils import mapk, last_token_pool
from loss_utils import compute_no_in_batch_neg_loss
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='train_retriever_v0.yaml')
parser.add_argument('--rank', type=str, default="0,1")
args = parser.parse_args()
cfg = load_yaml(args.cfg)
cfg = simple_namespace(cfg)
if args.rank:
cfg.general.rank = args.rank
print(f"cfg.general.rank: {cfg.general.rank}")
os.environ['CUDA_VISIBLE_DEVICES'] = cfg.general.rank
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
base_dir = "."
input_dir = f"{base_dir}/input"
comp_dir = f"{input_dir}/eedi-mining-misconceptions-in-mathematics"
output_dir = f"{base_dir}/output"
summary_log_path = f"{output_dir}/summary_retriever.log"
seed_torch(cfg.general.seed)
cur_time = current_date_time()
cur_time_abbr = cur_time.replace("-", "").replace(":", "").replace(" ", "")[4:12]
output_dir = f"{output_dir}/{cur_time_abbr}_retriever"
os.makedirs(output_dir, exist_ok=True)
LOGGER = init_logger(f'{output_dir}/train.log')
shutil.copy(args.cfg, f"{output_dir}/{args.cfg}")
num_gpus = torch.cuda.device_count()
LOGGER.info(f"可用的 GPU 数量: {num_gpus}")
if cfg.general.report_to == "wandb":
import wandb
wandb.login()
wandb.init(project=f"{cfg.model.model_name.split('/')[-1]}", name=cur_time_abbr)
LOGGER.info(f"polars=={polars.__version__}")
LOGGER.info(f"torch=={torch.__version__}")
LOGGER.info(f"transformers=={transformers.__version__}")
LOGGER.info(f"datasets=={datasets.__version__}")
LOGGER.info(f"sentence_transformers=={sentence_transformers.__version__}")
LOGGER.info(f"")
# %% ================== Read data =======================
if os.path.exists(f"{comp_dir}/{cfg.data.long_df_pq}"):
long_df = pd.read_parquet(f"{comp_dir}/{cfg.data.long_df_pq}")
LOGGER.info(f"load long_df, explode_df from parquet file.")
misconception_mapping_df = pl.read_csv(f"{comp_dir}/misconception_mapping.csv")
misconception_name = misconception_mapping_df["MisconceptionName"].to_list()
misconception_dict = misconception_mapping_df.to_pandas().set_index('MisconceptionId')['MisconceptionName'].to_dict()
LOGGER.info(f"len(misconception_mapping_df): {len(misconception_mapping_df)}")
else:
train_df = pl.read_csv(f"{comp_dir}/train_folds.csv")
LOGGER.info(f"len(train_df): {len(train_df)}")
misconception_mapping_df = pl.read_csv(f"{comp_dir}/misconception_mapping.csv")
misconception_name = misconception_mapping_df["MisconceptionName"].to_list()
misconception_dict = misconception_mapping_df.to_pandas().set_index('MisconceptionId')['MisconceptionName'].to_dict()
LOGGER.info(f"len(misconception_mapping_df): {len(misconception_mapping_df)}")
LOGGER.info(f"")
# 定义常用的列名列表
common_col = [
"QuestionId",
"ConstructName",
"SubjectName",
"QuestionText",
"CorrectAnswer",
"fold",
]
# 对训练集数据进行处理,转换为长表格式,并添加需要的列
long_df = (
train_df
# 选择需要的列,包括common_col和所有的Answer[A-D]Text列
.select(
pl.col(common_col + [f"Answer{alpha}Text" for alpha in ["A", "B", "C", "D"]])
)
# 获取 CorrectAnswer 的 Text,创建新列 CorrectAnswerText
.with_columns(
pl.when(pl.col("CorrectAnswer") == "A").then(pl.col("AnswerAText"))
.when(pl.col("CorrectAnswer") == "B").then(pl.col("AnswerBText"))
.when(pl.col("CorrectAnswer") == "C").then(pl.col("AnswerCText"))
.when(pl.col("CorrectAnswer") == "D").then(pl.col("AnswerDText"))
.otherwise(None)
.alias("CorrectAnswerText")
)
# 使用unpivot函数将宽表转换为长表,将Answer[A-D]Text列展开
.unpivot(
index=common_col+["CorrectAnswerText"], # 保持这些列不变
variable_name="AnswerType", # 展开列的名称存储在新列AnswerType中
value_name="AnswerText", # 展开列的值存储在新列AnswerText中
)
# 添加新列
.with_columns(
# 将ConstructName、SubjectName、QuestionText和AnswerText列拼接成一个字符串,存储在AllText列中
pl.concat_str(
[
'### Construct\n' + pl.col("ConstructName"),
'\n### Subject\n' + pl.col("SubjectName"),
'\n### Question\n'+ pl.col("QuestionText"),
'\n### Correct Answer\n' + pl.col("CorrectAnswerText"),
'\n### Wrong Answer\n' + pl.col("AnswerText"),
],
separator="",
).alias("AllText"),
# 从AnswerType列中提取选项字母(A-D),存储在AnswerAlphabet列中
pl.col("AnswerType").str.extract(r"Answer([A-D])Text$").alias("AnswerAlphabet"),
)
# 创建QuestionId_Answer列,将QuestionId和AnswerAlphabet拼接,形成唯一标识
.with_columns(
pl.concat_str(
[pl.col("QuestionId"), pl.col("AnswerAlphabet")], separator="_"
).alias("QuestionId_Answer"),
)
# 按照QuestionId_Answer进行排序
.sort("QuestionId_Answer")
)
# 对误解映射数据进行处理,转换为长表格式,并添加需要的列
misconception_mapping_df_long = (
train_df.select(
# 选择需要的列,包括common_col和所有的Misconception[A-D]Id列
pl.col(
common_col + [f"Misconception{alpha}Id" for alpha in ["A", "B", "C", "D"]]
)
)
# 使用unpivot函数将宽表转换为长表,将Misconception[A-D]Id列展开
.unpivot(
index=common_col, # 保持这些列不变
variable_name="MisconceptionType", # 展开列的名称存储在MisconceptionType中
value_name="MisconceptionId", # 展开列的值存储在MisconceptionId中
)
# 从MisconceptionType列中提取选项字母(A-D),存储在AnswerAlphabet列中
.with_columns(
pl.col("MisconceptionType")
.str.extract(r"Misconception([A-D])Id$")
.alias("AnswerAlphabet"),
)
# 创建QuestionId_Answer列,将QuestionId和AnswerAlphabet拼接,形成唯一标识
.with_columns(
pl.concat_str(
[pl.col("QuestionId"), pl.col("AnswerAlphabet")], separator="_"
).alias("QuestionId_Answer"),
)
# 按照QuestionId_Answer进行排序
.sort("QuestionId_Answer")
# 选择需要的列
.select(pl.col(["QuestionId_Answer", "MisconceptionId"]))
# 将MisconceptionId列的数据类型转换为Int64
.with_columns(pl.col("MisconceptionId").cast(pl.Int64))
)
long_df = long_df.join(misconception_mapping_df_long, on="QuestionId_Answer")
LOGGER.info(f"long_df len (has nan): {len(long_df)}")
# =================== Dataset ====================
last_oof_df = pd.read_csv(f"{input_dir}/{cfg.data.oof_csv}")[["QuestionId_Answer", "preds_all_mm_ids"]]
last_oof_df["preds_all_mm_ids"] = last_oof_df["preds_all_mm_ids"].apply(ast.literal_eval)
last_oof_df["pred_mm_id"] = last_oof_df["preds_all_mm_ids"].apply(lambda x: x[:cfg.data.top_nums])
last_oof_df = pl.DataFrame(last_oof_df)
long_df = long_df.join(last_oof_df, on="QuestionId_Answer", how="left")
long_df = long_df.to_pandas()
LOGGER.info(f"{long_df.columns = }")
# 只选择 MisconceptionId 不为NaN 的数据
long_df = long_df[~pd.isna(long_df["MisconceptionId"])].reset_index(drop=True)
long_df["MisconceptionId"] = long_df["MisconceptionId"].astype(int)
long_df = long_df[["QuestionId_Answer", "AllText", "MisconceptionId", "preds_all_mm_ids", "fold"]]
LOGGER.info(f"long_df shape (after del nan): {long_df.shape}")
# 保存数据
long_df.to_parquet(f"{comp_dir}/{cfg.data.long_df_pq}")
def adjust_passage_ids(row, pred_col, topk=25):
misconception_id = row['MisconceptionId']
if isinstance(row[pred_col], list):
predict_list = row[pred_col]
else:
predict_list = row[pred_col].tolist()
# 如果MisconceptionId在 preds_all_mm_ids 中,调整到最前面
if misconception_id in predict_list:
predict_list.remove(misconception_id)
predict_list.insert(0, misconception_id)
else:
# 如果不在,插入到最前面并去掉最后一个元素
predict_list.insert(0, misconception_id)
predict_list.pop()
predict_list = predict_list[:topk]
return predict_list
def convert_to_text(passages_list):
return [misconception_dict.get(misconception_id, '') for misconception_id in passages_list]
long_df['passage_ids'] = long_df.apply(lambda row: adjust_passage_ids(row, pred_col="preds_all_mm_ids", topk=cfg.data.top_nums), axis=1)
long_df['passage_texts'] = long_df['passage_ids'].apply(convert_to_text)
# AllText token len: max:404, median: 91
# MisconceptionName token len: max: 45, median: 14
# pred_mm_name token len: max: 45, median: 14
if cfg.data.full_train_data:
tra_long_df = long_df
val_long_df = long_df
LOGGER.info(f"full tra_long_df, len(long_df): {len(long_df)}")
else:
tra_long_df = long_df[long_df["fold"] != cfg.data.fold_idx].reset_index(drop=True)
val_long_df = long_df[long_df["fold"] == cfg.data.fold_idx].reset_index(drop=True)
LOGGER.info(f"len(tra_long_df): {len(tra_long_df)}, len(val_long_df): {len(val_long_df)}, val rate: {len(val_long_df) / (len(tra_long_df)+len(val_long_df)):.1%}")
# %% ========= Tokenizer and Dataset =========
def add_suffix(text, suffix_text, is_query):
text = f"{suffix_text}{text}"
text = text.strip()
if is_query:
text = f"{text}\n<response>"
return text
class QPDataset(Dataset):
def __init__(self, tra_long_df, shuffle=True):
# train_df_long to data
if cfg.general.debug:
tra_long_df = tra_long_df.sample(frac=cfg.general.debug_size, random_state=cfg.general.seed).reset_index(drop=True)
LOGGER.info(f"debug mode, len(tra_long_df): {len(tra_long_df)}")
self.queries = tra_long_df['AllText'].tolist()
self.passages = tra_long_df['passage_texts'].tolist()
if shuffle:
list_len = len(self.queries)
indices = np.arange(list_len)
np.random.shuffle(indices)
self.queries = [self.queries[i] for i in indices]
self.passages = [self.passages[i] for i in indices]
self.queries = [add_suffix(x, cfg.data.query_prefix, is_query=True) for x in self.queries]
self.passages = [
[add_suffix(x, cfg.data.mis_prefix, is_query=False) for x in passage]
for passage in self.passages
]
assert len(self.queries) == len(self.passages), f"{len(self.queries) = } != {len(self.passages) = }"
def __len__(self):
return len(self.queries)
def __getitem__(self, idx):
return {
'queries': self.queries[idx],
'passages': self.passages[idx],
}
def collate_fn(batch):
queries = [item['queries'] for item in batch]
passages = [item['passages'] for item in batch]
return {
'queries': queries,
'passages': passages
}
if cfg.data.peek_dataset:
tmp_qp_dataset = QPDataset(tra_long_df)
one_sample = tmp_qp_dataset[0]
LOGGER.info(f"\nQUERY:\n{one_sample['queries']}")
LOGGER.info(f"\nGT:\n{one_sample['passages'][0]}")
LOGGER.info(f"\nPASSAGES:\n{one_sample['passages']}")
# Initialize tokenizer
tokenizer = AutoTokenizer.from_pretrained(f"{input_dir}/{cfg.model.model_name}", trust_remote_code=True)
# %% ========= Model =========
layers_num = 42
lora_config = LoraConfig(
r=cfg.model.lora_r,
lora_alpha=cfg.model.lora_alpha,
lora_dropout=cfg.model.lora_dropout,
bias=cfg.model.lora_bias,
task_type=TaskType.FEATURE_EXTRACTION, # TaskType.FEATURE_EXTRACTION TaskType.CAUSAL_LM
target_modules=cfg.model.lora_target_modules,
# layers_to_transform=[i for i in range(layers_num) if i >= cfg.model.freeze_layers],
)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16 if cfg.training.amp=="bf16" else torch.float16,
)
model = AutoModel.from_pretrained(
f"{input_dir}/{cfg.model.model_name}",
torch_dtype=torch.bfloat16 if cfg.training.amp=="bf16" else torch.float16,
device_map="auto",
trust_remote_code=True,
quantization_config=bnb_config,
# attn_implementation="flash_attention_2",
)
model.config.use_cache = False
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
# %% ========= Training =========
def valid_func(model, tokenizer, df, query_prefix, mis_prefix, mode="valid"):
model.eval()
batch_size = cfg.training.per_device_eval_batch_size
query_list = df["AllText"].to_list()
query_result = []
for i in tqdm(range(0, len(query_list), batch_size)):
batch_query_list = query_list[i:i+batch_size]
batch_query_list = [add_suffix(x, query_prefix, is_query=True) for x in batch_query_list]
query_encodings = tokenizer(
batch_query_list,
padding=True,
truncation=True,
return_tensors='pt',
max_length=cfg.model.query_max_length,
)
input_ids = query_encodings['input_ids'].to(model.device)
attention_mask = query_encodings['attention_mask'].to(model.device)
with torch.no_grad():
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
embeddings = last_token_pool(outputs.last_hidden_state, attention_mask)
embeddings = F.normalize(embeddings, p=2, dim=1) # shape: (4370, 4096)
query_result.append(embeddings)
torch.cuda.empty_cache()
query_embeddings = torch.cat(query_result, dim=0)
misconception_result = []
for i in tqdm(range(0, len(misconception_name), batch_size)):
batch_misconception_name = misconception_name[i:i+batch_size]
batch_misconception_name = [add_suffix(x, mis_prefix, is_query=False) for x in batch_misconception_name]
misconception_encodings = tokenizer(
batch_misconception_name,
padding=True,
truncation=True,
return_tensors='pt',
max_length=cfg.model.mis_max_length,
)
input_ids = misconception_encodings['input_ids'].to(model.device)
attention_mask = misconception_encodings['attention_mask'].to(model.device)
with torch.no_grad():
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
embeddings = last_token_pool(outputs.last_hidden_state, attention_mask)
embeddings = F.normalize(embeddings, p=2, dim=1) # shape: (2587, 4096)
misconception_result.append(embeddings)
torch.cuda.empty_cache()
misconception_embeddings = torch.cat(misconception_result, dim=0)
scores = (query_embeddings @ misconception_embeddings.T) * 100 # shape: (len(df), 2587)
scores = scores.float()
scores = scores.cpu().numpy()
LOGGER.info(f"{scores.shape = }")
# 获取误解id的index,按照score排序
preds_all_mm_ids = np.argsort(-scores, axis=1)
preds_top25_mm_ids = preds_all_mm_ids[:, :25]
df["preds_all_mm_ids"] = preds_all_mm_ids.tolist()
df["preds_top25_mm_ids"] = preds_top25_mm_ids.tolist()
return df
def encode_texts(model, tokenizer, texts, max_length):
if type(texts[0]) == list:
# shape: (batch_size, group_size) -> (batch_size * group_size)
texts = [text for texts_ in texts for text in texts_]
# 进行分词
encodings = tokenizer(
texts,
padding=True,
truncation=True,
return_tensors='pt',
max_length=max_length,
)
input_ids = encodings['input_ids'].to(model.device)
attention_mask = encodings['attention_mask'].to(model.device)
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
# 获取嵌入表示
# padding_side='left'
embeddings = last_token_pool(outputs.last_hidden_state, attention_mask)
# embeddings = outputs[0][:, -1, :]
return embeddings
def train_func(model, val_long_df):
train_dataset = QPDataset(tra_long_df)
train_dataloader = DataLoader(
train_dataset,
batch_size=cfg.training.per_device_train_batch_size,
shuffle=True,
collate_fn=collate_fn
)
accelerator = Accelerator()
device = accelerator.device
if cfg.training.optim_type == "adamw":
optimizer = torch.optim.AdamW(model.parameters(), lr=cfg.training.lr, weight_decay=cfg.training.weight_decay)
scheduler = OneCycleLR(
optimizer,
max_lr=cfg.training.lr,
total_steps=cfg.training.n_epochs * len(train_dataloader) // cfg.training.gradient_accumulation_steps,
pct_start=cfg.training.one_cycle_pct_start,
anneal_strategy='cos',
div_factor=25.0,
final_div_factor=100,
)
model, optimizer, train_dataloader = accelerator.prepare(
model, optimizer, train_dataloader
)
losses = []
lrs = []
for epoch in range(cfg.training.n_epochs):
model.train()
step = 0
bar = tqdm(train_dataloader, desc=f'Epoch {epoch+1}/{cfg.training.n_epochs}', total=len(train_dataloader), ncols=100)
for batch_idx, batch in enumerate(bar):
step += 1
queries = batch['queries']
passages = batch['passages']
# 编码文本
queries_embeddings = encode_texts(model, tokenizer, queries, max_length=cfg.model.query_max_length)
passages_embeddings = encode_texts(model, tokenizer, passages, max_length=cfg.model.mis_max_length)
queries_embeddings = F.normalize(queries_embeddings, p=2, dim=1)
passages_embeddings = F.normalize(passages_embeddings, p=2, dim=1)
# queries_embeddings.shape = [4, 2048]
# passages_embeddings.shape = [60, 2048] , 每个query对应15个passage, 其中第0个是正确答案, 其余14个是错误答案
local_scores, loss = compute_no_in_batch_neg_loss(queries_embeddings, passages_embeddings, temperature=cfg.training.temperature)
loss = loss / cfg.training.gradient_accumulation_steps
accelerator.backward(loss)
clip_grad_norm_(model.parameters(), max_norm=10.0)
if (batch_idx + 1) % cfg.training.gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
scheduler.step()
losses.append(loss.item())
lrs.append(optimizer.param_groups[0]["lr"])
bar.set_postfix(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
avg_loss = np.mean(losses[-10:])
print(f"Epoch {epoch+1}/{cfg.training.n_epochs}, Average Loss: {avg_loss:.4f}")
torch.cuda.empty_cache()
gc.collect()
# Valid
train_oof_df = valid_func(model, tokenizer, tra_long_df, cfg.data.query_prefix, cfg.data.mis_prefix, mode="train")
oof_df = valid_func(model, tokenizer, val_long_df, cfg.data.query_prefix, cfg.data.mis_prefix, mode="valid")
mapk_score, recall_scores = get_result(oof_df)
log_str = f"MAP@25: {mapk_score:.4f}\n"
log_str += " | ".join([f"R@{k}: {recall_scores[f'recall@{k}']:.4f}" for k in [1, 10, 25, 50, 100]])
LOGGER.info(log_str)
# 画出损失曲线
move_windows = 3
ma_losses = pd.Series(losses).rolling(window=move_windows, min_periods=1).mean()
plt.plot(ma_losses)
plt.xlabel('Step')
plt.ylabel('Loss')
plt.title('Training Loss')
plt.savefig(f"{output_dir}/training_loss.png")
# 清空之前的plt
plt.clf()
# 画出学习率曲线
plt.plot(lrs)
plt.xlabel('Step')
plt.ylabel('Learning Rate')
plt.title('Learning Rate')
plt.savefig(f"{output_dir}/learning_rate.png")
# save model to disk
model.save_pretrained(f"{output_dir}/{cur_time_abbr}adapetermodel")
tokenizer.save_pretrained(f"{output_dir}/{cur_time_abbr}adapetermodel")
LOGGER.info("save adapeter model.")
return train_oof_df, oof_df
# ======================= Run ==========================
def get_result(oof_df):
# Compute MAP@25
label = oof_df["MisconceptionId"].tolist()
label = [[i] for i in label]
preds = oof_df["preds_top25_mm_ids"].tolist()
mapk_score = mapk(label, preds)
# Compute recalls at various cutoffs
ks = [1, 10, 25, 50, 100]
recall_scores = {}
ground_truth_ids = oof_df["MisconceptionId"].tolist()
all_predictions = oof_df["preds_all_mm_ids"].tolist() # Each is a list of predicted MisconceptionIds
for k in ks:
num_correct = sum([1 if gt_id in preds[:k] else 0 for gt_id, preds in zip(ground_truth_ids, all_predictions)])
recall = num_correct / len(oof_df)
recall_scores[f"recall@{k}"] = recall
return mapk_score, recall_scores
start_time = time.time()
train_oof_df, oof_df = train_func(model, val_long_df)
train_oof_df.to_csv(f"{output_dir}/train_oof_df.csv", index=False)
oof_df.to_csv(f"{output_dir}/oof_df.csv", index=False)
mapk_score, recall_scores = get_result(oof_df)
result_log = f"MAP@25: {mapk_score:.4f}\n"
result_log += " | ".join([f"R@{k}: {recall_scores[f'recall@{k}']:.4f}" for k in [1, 10, 25, 50, 100]])
result_log += f"\nElapsed time: {get_timediff(start_time, time.time())}"
LOGGER.info(result_log)
write_to_summary_log(summary_log_path, result_log) |