Spaces:
Running
Running
File size: 7,188 Bytes
64e353a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import streamlit as st
import pandas as pd
import numpy as np
import datetime
import plotly.express as px
import plotly.graph_objects as go
import statsmodels.api as sm
from millify import millify
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
from st_aggrid import AgGrid
import io
import openpyxl
#from st_pages import Page, show_pages, add_page_title
# Set page title
st.set_page_config(page_title="Followers - Tiktok Analytics Dashboard", page_icon = "📊", layout = "centered", initial_sidebar_state = "auto")
st.header("Followers")
st.markdown("""Upload your files here to load your data!
*'Follower activity', 'Top territories', 'Gender', 'Total followers' (xlsx or csv format)*
""")
uploaded_files = st.file_uploader(
"Choose CSV or Excel files to upload",
accept_multiple_files=True,
type=['csv', 'xlsx'])
if uploaded_files:
data_list = []
# read the file
with st.expander("View uploaded data"):
for uploaded_file in uploaded_files:
st.write("▾ Filename:", uploaded_file.name)
bytes_data = uploaded_file.read()
data = None
if uploaded_file.type == 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet':
data = pd.read_excel(io.BytesIO(bytes_data))
AgGrid(data)
else:
data = pd.read_csv(io.StringIO(bytes_data.decode('utf-8')))
AgGrid(data)
data_list.append(data)
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Follower Activity", "Gender", "Top Territories", "Followers", "Difference in Daily Followers"])
for data in data_list:
#st.write(data.columns)
#st.write(data)
with tab1:
if 'Active followers' in data.columns:
# create a list of all unique dates in the data
unique_dates = data['Date'].unique()
# Add a date filter widget
filter_type = st.sidebar.radio("Select filter type for Follower Activity", ["Individual date", "Total date range"])
if filter_type == "Individual date":
selected_date = st.sidebar.selectbox("Select a date", unique_dates)
# Filter the data to only include the selected date
filtered_data = data[data['Date'] == selected_date]
# Calculate the average number of followers for the selected date
avg_followers = filtered_data['Active followers'].mean()
elif filter_type == "Total date range":
# Filter the data to include the entire date range
filtered_data = data
# Calculate the average number of followers for the entire date range
avg_followers = filtered_data['Active followers'].mean()
#else:
# Get the start and end dates using st.date_input
#start_date = st.sidebar.date_input("Select start date", data['Date'].min(), data['Date'].max())
#end_date = st.sidebar.date_input("Select end date", data['Date'].min(), data['Date'].max())
# Filter the data based on the start and end dates
#filtered_data = data[(data['Date'] >= start_date) & (data['Date'] <= end_date)]
# create a datetime column from the date and hour columns
filtered_data['Datetime'] = pd.to_datetime(filtered_data['Date'] + ' ' + (filtered_data['Hour'] - 1).astype(str) + ':00:00')
# group the data by the datetime column and calculate the sum of active followers
grouped_data = filtered_data.groupby("Datetime")["Active followers"].sum().reset_index()
# create a line chart using Plotly Express
fig = px.line(filtered_data, x="Datetime", y="Active followers", title="Follower Activity")
# Add average line
fig.add_shape(type='line', x0=filtered_data['Datetime'].min(), y0=avg_followers, x1=filtered_data['Datetime'].max(), y1=avg_followers, line=dict(color='red', width=3, dash='dash'))
# Annotate average value onto average line
fig.add_annotation(x=filtered_data['Datetime'].max(), y=avg_followers, text=f"Average: {avg_followers:.0f}", showarrow=True, arrowhead=2)
st.plotly_chart(fig)
with tab2:
if 'Gender' in data.columns:
#st.write("Pie chart for 'Gender'")
gender_data = data.groupby('Gender')['Distribution'].apply(lambda x: pd.to_numeric(x.str.replace('%', ''), errors='coerce').dropna().mean()).reset_index()
fig = px.pie(gender_data, values='Distribution', names='Gender', title='Gender Distribution (%)',
color_discrete_sequence=['#1f77b4', '#ff7f0e'])
st.plotly_chart(fig)
with tab3:
if 'Top territories' in data.columns:
territories_data = data.groupby('Top territories')['Distribution'].apply(lambda x: pd.to_numeric(x.str.replace('%', ''), errors='coerce').dropna().mean()).reset_index()
territories_data = territories_data.sort_values(by='Distribution', ascending=True)
#st.write("Top 5 territories by distribution")
fig = px.bar(territories_data, x='Distribution', y='Top territories', title='Distribution (%) of Top 5 Countries',
color_discrete_sequence=px.colors.qualitative.Dark2)
st.plotly_chart(fig)
with tab4:
if 'Followers' in data.columns:
fig = px.line(data, x="Date", y="Followers", title="Total Followers", markers=True,
hover_data={'Followers': ':.2f'})
st.plotly_chart(fig)
with tab5:
if 'Difference in followers from previous day' in data.columns:
# Create a custom color scale
def custom_color_scale(val):
if val >= 0:
return 'rgba(54, 164, 235, 0.8)'
else:
return 'rgba(255, 77, 77, 0.8)'
fig = px.bar(data, x="Date", y="Difference in followers from previous day", title="Difference in Daily Followers",
text='Difference in followers from previous day', color='Difference in followers from previous day',
hover_data={'Difference in followers from previous day': ':.2f'}, color_discrete_map={val: custom_color_scale(val) for val in data['Difference in followers from previous day']})
# Customize the layout
fig.update_layout(
title="Difference in Daily Followers",
xaxis_title="Date",
yaxis_title="Difference in Daily Followers",
showlegend=False,
plot_bgcolor="white",
yaxis=dict(zeroline=True, zerolinewidth=2, zerolinecolor="black"), # Add a line at y=0
)
st.plotly_chart(fig)
|