File size: 8,741 Bytes
44ac4da
 
87bf3c7
 
 
 
 
 
 
 
 
 
 
 
 
07abc51
87bf3c7
 
 
 
 
 
 
 
 
 
a21c8ab
 
2cf774f
06c81be
4bb67b3
 
 
a21c8ab
b31a1d5
87bf3c7
32aafee
67aca21
87bf3c7
67aca21
87bf3c7
a21c8ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86cd028
409563e
87bf3c7
07abc51
87bf3c7
 
c904168
 
1c3236f
c904168
1c3236f
c904168
3edd3ca
87bf3c7
 
a21c8ab
4bb67b3
c88286f
a21c8ab
 
 
 
 
e95954d
dbafc77
a21c8ab
 
 
 
 
8f8d70a
3ddfba1
 
 
 
52a11ab
828756a
a21c8ab
ebde2f8
 
8f8d70a
5e8eef3
3ddfba1
 
bc2a18b
 
 
0332fd5
 
 
81ea362
0332fd5
 
 
 
bc2a18b
 
 
0332fd5
3ddfba1
 
064a5f0
52a11ab
81ea362
4652972
 
81ea362
4652972
 
82370ff
32aafee
82370ff
4652972
81ea362
52a11ab
 
32aafee
 
82370ff
32aafee
 
 
82370ff
32aafee
064a5f0
a6d7fbc
6c2da96
064a5f0
c88286f
6c2da96
064a5f0
c88286f
 
 
 
 
 
87bf3c7
c88286f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import streamlit as st

st.sidebar.header("Transformer parameters")
col1, col2 = st.sidebar.columns([2, 4])

bs = st.sidebar.number_input('Batch size', value=10)
h = st.sidebar.number_input('Num heads',value=16)
d = st.sidebar.number_input('Dimension', value=768)
l = st.sidebar.number_input('Num layers', value=24)

n_start = st.sidebar.number_input('Start seq', value=1)
n = st.sidebar.number_input('End seq', value=1024)

st.sidebar.header("GPU parameters")

GPU = st.sidebar.selectbox('GPU', ('A100', 'V100'))

if GPU == 'A100':
  # A100 specs
  TFLOPS = 312e12 
  GB_S = 1935e9
elif GPU == 'V100':
  TFLOPS = 112e12
  GB_S = 900e9
else:
  raise ValueError('Unknown GPU') 

# in ms

THREAD_OVERHEAD = st.sidebar.number_input('Thread overhead (in ms)', format="%.3f", value=0.005)
GPU_EFFICIENCY = st.sidebar.number_input('GPU efficiency', format="%.3f", value=0.5)

TFLOPS = GPU_EFFICIENCY*TFLOPS

# in ms
def calc_exec_time(comp_flop, mem_bytes, include_overhead=True):
  exec_time = max(comp_flop/TFLOPS, mem_bytes/GB_S)
  exec_time *= 1000
  if include_overhead:
    exec_time = max(exec_time, THREAD_OVERHEAD)
  return exec_time

def qkv_mha_exec(bs, h, n, d):
  flop = 2*bs*1*d*3*d
  nbytes = 2*bs*1*d + 2*3*d*d + 2*bs*1*3*d
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
     
def qkv_mqa_exec(bs, h, n, d):
  flop = 2*bs*1*d*(1+2/h)*d
  nbytes = 2*bs*1*d + 2*(2/h)*d*d + 2*bs*1*(2/h)*d
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
  
def att1_mha_exec(bs, h, n, d):
  flop = 2*bs*h*(d/h)*n
  nbytes = 2*bs*h*(d/h) + 2*bs*h*n*(d/h) + 2*bs*h*n
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
  
def att1_mqa_exec(bs, h, n, d):
  flop = 2*bs*h*(d/h)*n
  nbytes = 2*bs*h*(d/h) + 2*bs*n*(d/h) + 2*bs*h*n
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time

def att2_mha_exec(bs, h, n, d):
  flop = 2*bs*h*n*(d/h)
  nbytes = 2*bs*h*n + 2*bs*h*n*(d/h) + 2*bs*h*(d/h)
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
  
def att2_mqa_exec(bs, h, n, d):
  flop = 2*bs*h*n*(d/h)
  nbytes = 2*bs*n*(d/h) + 2*bs*n*(d/h) + 2*bs*h*(d/h)
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
  
def out_exec(bs, h, n, d):
  flop = 2*bs*1*d*d
  nbytes = 2*bs*1*d + 2*d*d + 2*bs*1*d
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time

def softmax_exec(bs, h, n, d):
  flop = 0
  nbytes = 2*bs*h*n + 2*bs*h*n
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time

def ln_exec(bs, h, n, d):
  nbytes = 2*bs*1*d + 2*bs*1*d
  flop = 0
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time

def mlp_exec(bs, h, n, d):
  flop = 2*bs*1*d*4*d
  nbytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
  
def print_kernel_execution(flop, nbytes):
  c1, c2 = st.columns([2, 3])
  exec_time = calc_exec_time(flop, nbytes, include_overhead=False)
  flop = round(flop/1e9, 2)
  nbytes = round(nbytes/1e6, 2)
  
  c1.write("GFLOP:")
  c2.write(str(flop))
  c1.write("MB: ")
  c2.write(str(nbytes))
  c1.write("Time (ms):")
  c2.write(str(exec_time))
  c1.write("Overhead (ms):")
  c2.write(str(THREAD_OVERHEAD))

st.title("Inference time MHA vs MQA")
st.write("This space approximates the inference time for Multi-Query Attention and Multi-Head Attention transformers. You can change the hyperparameters in sidebar.")

mqa_total_time = 0.
mha_total_time = 0.

for i in range(n_start, n):
  shared_time = out_exec(bs, h, i, d)[2] + softmax_exec(bs, h, i , d)[2] + 2*ln_exec(bs, h, i, d)[2] \
                + 2*mlp_exec(bs, h, i, d)[2] + 3*ln_exec(bs, h, i, d)[2]
  mha_time = shared_time + qkv_mha_exec(bs, h, i, d)[2] + att1_mha_exec(bs, h, i, d)[2] + att2_mha_exec(bs, h, i, d)[2]
  mha_total_time += l*mha_time
  mqa_time = shared_time + qkv_mqa_exec(bs, h, i, d)[2] + att1_mqa_exec(bs, h, i, d)[2] + att2_mqa_exec(bs, h, i, d)[2]
  mqa_total_time += l*mqa_time
  
c1, c2 = st.columns([2, 4])
c1.write("Multi-Head Attention:")
c2.write(str(round(mha_total_time, 2)))
c1.write("Multi-Query Attention:")
c2.write(str(round(mqa_total_time, 2)))
c1.write("Speed-up MQA over MHA:")
c2.write(str(round(mha_total_time/mqa_total_time,2)))

st.subheader("Memory consumption")
st.caption("Multi-Head Attention")
c1, c2 = st.columns([2, 4])
num_params = 12*l*d*d
c1.write("Num Parameters (in B)")
c2.write(str(round(num_params/1e9, 3)))
c1.write("Stored Parameters (GB)")
c2.write(str(round(2*num_params/1e9, 3)))
c1.write("Cached keys and values (GB)")
acts = round(2*bs*l*(d/h)*h*2*n/1e9, 2)
c2.write(str(acts))

st.caption("Multi-Query Attention")
c1, c2 = st.columns([2, 4])
num_params = (10+2/h)*l*d*d
c1.write("Num Parameters (in B)")
c2.write(str(round(num_params/1e9, 3)))
c1.write("Stored Parameters (GB)")
c2.write(str(round(2*num_params/1e9, 3)))
c1.write("Cached keys and values (GB)")
acts = round(2*bs*l*(d/h)*2*n/1e9, 2)
c2.write(str(acts))

st.subheader("Estimating execution time")
st.markdown("We use the [following crude approximation](https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html#understand-perf) to estimate the execution time for each matrix multiplication.")

st.latex("C = A \cdot B")
st.latex("A \in \mathbb{R}^{MxK}, B \in R^{KxN}, C \in \mathbb{R}^{MxN}")

st.markdown('''
To execute this operation on the GPU, we need to 
1. Read A, B from memory
2. Perform matrix multiplication
3. Write C to memory
''')

st.markdown("For float16 operations (2 bytes), we can estimate the memory access time of A as follows:")
st.latex("T_{mem}(A) = 2*M*K / BW_{mem}")
st.markdown("where BW_mem is the memory bandwidth of the GPU (e.g. 1935 GB/s for an A100 GPU)")
st.markdown("The total time on memory access is T_mem = T_mem(A) + T_mem(B) + T_mem(C)")

st.markdown("We can estimate the compute time for the math operations as follows:")
st.latex("T_{math}(A \cdot B) = 2*M*K*N / BW_{math}")
st.markdown("where BW_math is the number of floating point operations per second (e.g. 312 TFLOPS for an A100 GPU)")

st.markdown("If we assume we can *perfectly* overlap memory access with math operations, then the estimated execution time for the operation is:")
st.latex("max(T_{math}, T_{mem})")

st.markdown("Note that there is a minimum time to execute the operation due to [kernel launch overhead](https://forums.developer.nvidia.com/t/any-way-to-measure-the-latency-of-a-kernel-launch/221413/2)")

st.subheader("Inference time for Transformer operations")
st.markdown("We can now estimate the execution for each of the operations in the transformer model. I suggest you inspect the code for details on the calculations. ")

st.subheader('Attention layer')

st.markdown('**QKV projection**')
st.caption("Multi-Head Attention")
flop, nbytes, exec_time = qkv_mha_exec(bs, h, n, d)
print_kernel_execution(flop, nbytes)
 
st.caption("Multi-Query Attention")
flop, nbytes, exec_time = qkv_mqa_exec(bs, h, n, d)
print_kernel_execution(flop, nbytes)

st.markdown('**QK gemm**')
st.write("Showing calculation for the maximum sequence length (n)")

st.caption("Multi-Head Attention")
flop, nbytes, exec_time = att1_mha_exec(bs, h, n, d)
print_kernel_execution(flop, nbytes)

st.caption("Multi-Query Attention")
flop, nbytes, exec_time = att1_mqa_exec(bs, h, n, d)
print_kernel_execution(flop, nbytes)

st.markdown('**Attention-value gemm**')
st.write("Showing calculation for the maximum sequence length (n)")
st.caption("Multi-Head Attention")
flop, nbytes, exec_time = att2_mha_exec(bs, h, n, d)
print_kernel_execution(flop, nbytes)

st.caption("Multi-Query Attention")
flop, nbytes, exec_time = att2_mqa_exec(bs, h, n, d)
print_kernel_execution(flop, nbytes)

st.markdown('**Output projection**')
flop, nbytes, exec_time = out_exec(bs, h, n, d)
print_kernel_execution(flop, nbytes)

st.markdown('**Element-wise ops**')
st.write("We also need to take into the softmax layer, layer norm, and residual connection. We assume that these operations are memory bound. ")

st.caption("Softmax")
flop, nbytes, exec_time = softmax_exec(bs, h, n, d)
print_kernel_execution(flop, nbytes)

st.caption("Layer norm/residual connection")
flop, nbytes, exec_time = ln_exec(bs, h, n, d)
print_kernel_execution(flop, nbytes)

st.subheader('MLP layer')  
st.markdown('**First and Second Linear Layer**')
flop, nbytes, exec_time = mlp_exec(bs, h, n, d)
print_kernel_execution(flop, nbytes)

st.markdown('**Element-wise ops**')
st.write("We also need to take into the GeLU, layer norm, and residual connection. We assume that these operations are memory bound. ")
flop, nbytes, exec_time = ln_exec(bs, h, n, d)
print_kernel_execution(flop, nbytes)