Spaces:
Runtime error
Runtime error
File size: 16,860 Bytes
a1a0fc5 0d6d3ac a1a0fc5 013a220 a1a0fc5 013a220 a1a0fc5 0d6d3ac a1a0fc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
#!/usr/bin/env python
"""
Demo showcasing parameter-efficient fine-tuning of Stable Dissfusion via Dreambooth leveraging 🤗 PEFT (https://github.com/huggingface/peft)
The code in this repo is partly adapted from the following repositories:
https://huggingface.co/spaces/hysts/LoRA-SD-training
https://huggingface.co/spaces/multimodalart/dreambooth-training
"""
from __future__ import annotations
import os
import pathlib
import gradio as gr
import torch
from typing import List
from inference import InferencePipeline
from trainer import Trainer
from uploader import upload
TITLE = "# LoRA + Dreambooth Training and Inference Demo 🎨"
DESCRIPTION = "Demo showcasing parameter-efficient fine-tuning of Stable Dissfusion via Dreambooth leveraging 🤗 PEFT (https://github.com/huggingface/peft)."
ORIGINAL_SPACE_ID = "smangrul/peft-lora-sd-dreambooth"
SPACE_ID = os.getenv("SPACE_ID", ORIGINAL_SPACE_ID)
SHARED_UI_WARNING = f"""# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
"""
if os.getenv("SYSTEM") == "spaces" and SPACE_ID != ORIGINAL_SPACE_ID:
SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'
else:
SETTINGS = "Settings"
CUDA_NOT_AVAILABLE_WARNING = f"""# Attention - Running on CPU.
<center>
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
"T4 small" is sufficient to run this demo.
</center>
"""
def show_warning(warning_text: str) -> gr.Blocks:
with gr.Blocks() as demo:
with gr.Box():
gr.Markdown(warning_text)
return demo
def update_output_files() -> dict:
paths = sorted(pathlib.Path("results").glob("*.pt"))
config_paths = sorted(pathlib.Path("results").glob("*.json"))
paths = paths + config_paths
paths = [path.as_posix() for path in paths] # type: ignore
return gr.update(value=paths or None)
def create_training_demo(trainer: Trainer, pipe: InferencePipeline) -> gr.Blocks:
with gr.Blocks() as demo:
base_model = gr.Dropdown(
choices=[
"CompVis/stable-diffusion-v1-4",
"runwayml/stable-diffusion-v1-5",
"stabilityai/stable-diffusion-2-1-base",
"dreamlike-art/dreamlike-photoreal-2.0"
],
value="runwayml/stable-diffusion-v1-5",
label="Base Model",
visible=True,
)
resolution = gr.Dropdown(choices=["512"], value="512", label="Resolution", visible=False)
with gr.Row():
with gr.Box():
gr.Markdown("Training Data")
concept_images = gr.Files(label="Images for your concept")
class_images = gr.Files(label="Class images")
concept_prompt = gr.Textbox(label="Concept Prompt", max_lines=1)
gr.Markdown(
"""
- Upload images of the style you are planning on training on.
- For a concept prompt, use a unique, made up word to avoid collisions.
- Guidelines for getting good results:
- Dreambooth for an `object` or `style`:
- 5-10 images of the object from different angles
- 500-800 iterations should be good enough.
- Prior preservation is recommended.
- `class_prompt`:
- `a photo of object`
- `style`
- `concept_prompt`:
- `<concept prompt> object`
- `<concept prompt> style`
- `a photo of <concept prompt> object`
- `a photo of <concept prompt> style`
- Dreambooth for a `Person/Face`:
- 15-50 images of the person from different angles, lighting, and expressions.
Have considerable photos with close up faces.
- 800-1200 iterations should be good enough.
- good defaults for hyperparams
- Model - `runwayml/stable-diffusion-v1-5` or `stabilityai/stable-diffusion-2-1-base`
- Use/check Prior preservation.
- Number of class images to use - 200
- Prior Loss Weight - 1
- LoRA Rank for unet - 16
- LoRA Alpha for unet - 20
- lora dropout - 0
- LoRA Bias for unet - `all`
- LoRA Rank for CLIP - 16
- LoRA Alpha for CLIP - 17
- LoRA Bias for CLIP - `all`
- lora dropout for CLIP - 0
- Uncheck `FP16` and `8bit-Adam` (don't use them for faces)
- `class_prompt`: Use the gender related word of the person
- `man`
- `woman`
- `boy`
- `girl`
- `concept_prompt`: just the unique, made up word, e.g., `srm`
- Choose `all` for `lora_bias` and `text_encode_lora_bias`
- Dreambooth for a `Scene`:
- 15-50 images of the scene from different angles, lighting, and expressions.
- 800-1200 iterations should be good enough.
- Prior preservation is recommended.
- `class_prompt`:
- `scene`
- `landscape`
- `city`
- `beach`
- `mountain`
- `concept_prompt`:
- `<concept prompt> scene`
- `<concept prompt> landscape`
- Experiment with various values for lora dropouts, enabling/disabling fp16 and 8bit-Adam
"""
)
with gr.Box():
gr.Markdown("Training Parameters")
num_training_steps = gr.Number(label="Number of Training Steps", value=1000, precision=0)
learning_rate = gr.Number(label="Learning Rate", value=0.0001)
gradient_checkpointing = gr.Checkbox(label="Whether to use gradient checkpointing", value=True)
train_text_encoder = gr.Checkbox(label="Train Text Encoder", value=True)
with_prior_preservation = gr.Checkbox(label="Prior Preservation", value=True)
class_prompt = gr.Textbox(
label="Class Prompt", max_lines=1, placeholder='Example: "a photo of object"'
)
num_class_images = gr.Number(label="Number of class images to use", value=50, precision=0)
prior_loss_weight = gr.Number(label="Prior Loss Weight", value=1.0, precision=1)
# use_lora = gr.Checkbox(label="Whether to use LoRA", value=True)
lora_r = gr.Number(label="LoRA Rank for unet", value=4, precision=0)
lora_alpha = gr.Number(
label="LoRA Alpha for unet. scaling factor = lora_alpha/lora_r", value=4, precision=0
)
lora_dropout = gr.Number(label="lora dropout", value=0.00)
lora_bias = gr.Dropdown(
choices=["none", "all", "lora_only"],
value="none",
label="LoRA Bias for unet. This enables bias params to be trainable based on the bias type",
visible=True,
)
lora_text_encoder_r = gr.Number(label="LoRA Rank for CLIP", value=4, precision=0)
lora_text_encoder_alpha = gr.Number(
label="LoRA Alpha for CLIP. scaling factor = lora_alpha/lora_r", value=4, precision=0
)
lora_text_encoder_dropout = gr.Number(label="lora dropout for CLIP", value=0.00)
lora_text_encoder_bias = gr.Dropdown(
choices=["none", "all", "lora_only"],
value="none",
label="LoRA Bias for CLIP. This enables bias params to be trainable based on the bias type",
visible=True,
)
gradient_accumulation = gr.Number(label="Number of Gradient Accumulation", value=1, precision=0)
fp16 = gr.Checkbox(label="FP16", value=True)
use_8bit_adam = gr.Checkbox(label="Use 8bit Adam", value=True)
gr.Markdown(
"""
- It will take about 20-30 minutes to train for 1000 steps with a T4 GPU.
- You may want to try a small number of steps first, like 1, to see if everything works fine in your environment.
- Note that your trained models will be deleted when the second training is started. You can upload your trained model in the "Upload" tab.
"""
)
run_button = gr.Button("Start Training")
with gr.Box():
with gr.Row():
check_status_button = gr.Button("Check Training Status")
with gr.Column():
with gr.Box():
gr.Markdown("Message")
training_status = gr.Markdown()
output_files = gr.Files(label="Trained Weight Files and Configs")
run_button.click(fn=pipe.clear)
run_button.click(
fn=trainer.run,
inputs=[
base_model,
resolution,
num_training_steps,
concept_images,
concept_prompt,
class_images,
learning_rate,
gradient_accumulation,
fp16,
use_8bit_adam,
gradient_checkpointing,
train_text_encoder,
with_prior_preservation,
prior_loss_weight,
class_prompt,
num_class_images,
lora_r,
lora_alpha,
lora_bias,
lora_dropout,
lora_text_encoder_r,
lora_text_encoder_alpha,
lora_text_encoder_bias,
lora_text_encoder_dropout,
],
outputs=[
training_status,
output_files,
],
queue=False,
)
check_status_button.click(fn=trainer.check_if_running, inputs=None, outputs=training_status, queue=False)
check_status_button.click(fn=update_output_files, inputs=None, outputs=output_files, queue=False)
return demo
def find_weight_files() -> List[str]:
curr_dir = pathlib.Path(__file__).parent
paths = sorted(curr_dir.rglob("*.pt"))
return [path.relative_to(curr_dir).as_posix() for path in paths]
def reload_lora_weight_list() -> dict:
return gr.update(choices=find_weight_files())
def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
base_model = gr.Dropdown(
choices=[
"CompVis/stable-diffusion-v1-4",
"runwayml/stable-diffusion-v1-5",
"stabilityai/stable-diffusion-2-1-base",
"dreamlike-art/dreamlike-photoreal-2.0"
],
value="runwayml/stable-diffusion-v1-5",
label="Base Model",
visible=True,
)
reload_button = gr.Button("Reload Weight List")
lora_weight_name = gr.Dropdown(
choices=find_weight_files(), value="lora/lora_disney.pt", label="LoRA Weight File"
)
prompt = gr.Textbox(label="Prompt", max_lines=1, placeholder='Example: "style of sks, baby lion"')
negative_prompt = gr.Textbox(
label="Negative Prompt", max_lines=1, placeholder='Example: "blurry, botched, low quality"'
)
seed = gr.Slider(label="Seed", minimum=0, maximum=100000, step=1, value=1)
with gr.Accordion("Other Parameters", open=False):
num_steps = gr.Slider(label="Number of Steps", minimum=0, maximum=1000, step=1, value=50)
guidance_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=50, step=0.1, value=7)
run_button = gr.Button("Generate")
gr.Markdown(
"""
- After training, you can press "Reload Weight List" button to load your trained model names.
- Few repos to refer for ideas:
- https://huggingface.co/smangrul/smangrul
- https://huggingface.co/smangrul/painting-in-the-style-of-smangrul
- https://huggingface.co/smangrul/erenyeager
"""
)
with gr.Column():
result = gr.Image(label="Result")
reload_button.click(fn=reload_lora_weight_list, inputs=None, outputs=lora_weight_name)
prompt.submit(
fn=pipe.run,
inputs=[
base_model,
lora_weight_name,
prompt,
negative_prompt,
seed,
num_steps,
guidance_scale,
],
outputs=result,
queue=False,
)
run_button.click(
fn=pipe.run,
inputs=[
base_model,
lora_weight_name,
prompt,
negative_prompt,
seed,
num_steps,
guidance_scale,
],
outputs=result,
queue=False,
)
seed.change(
fn=pipe.run,
inputs=[
base_model,
lora_weight_name,
prompt,
negative_prompt,
seed,
num_steps,
guidance_scale,
],
outputs=result,
queue=False,
)
return demo
def create_upload_demo() -> gr.Blocks:
with gr.Blocks() as demo:
model_name = gr.Textbox(label="Model Name")
hf_token = gr.Textbox(label="Hugging Face Token (with write permission)")
upload_button = gr.Button("Upload")
with gr.Box():
gr.Markdown("Message")
result = gr.Markdown()
gr.Markdown(
"""
- You can upload your trained model to your private Model repo (i.e. https://huggingface.co/{your_username}/{model_name}).
- You can find your Hugging Face token [here](https://huggingface.co/settings/tokens).
"""
)
upload_button.click(fn=upload, inputs=[model_name, hf_token], outputs=result)
return demo
pipe = InferencePipeline()
trainer = Trainer()
with gr.Blocks(css="style.css") as demo:
if os.getenv("IS_SHARED_UI"):
show_warning(SHARED_UI_WARNING)
if not torch.cuda.is_available():
show_warning(CUDA_NOT_AVAILABLE_WARNING)
gr.Markdown(TITLE)
gr.Markdown(DESCRIPTION)
with gr.Tabs():
with gr.TabItem("Train"):
create_training_demo(trainer, pipe)
with gr.TabItem("Test"):
create_inference_demo(pipe)
with gr.TabItem("Upload"):
create_upload_demo()
demo.queue(default_enabled=False).launch(share=False)
|