File size: 16,860 Bytes
a1a0fc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d6d3ac
a1a0fc5
 
 
 
 
 
 
 
 
 
 
013a220
a1a0fc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
013a220
a1a0fc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d6d3ac
a1a0fc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
#!/usr/bin/env python
"""
Demo showcasing parameter-efficient fine-tuning of Stable Dissfusion via Dreambooth leveraging 🤗 PEFT (https://github.com/huggingface/peft)

The code in this repo is partly adapted from the following repositories:
https://huggingface.co/spaces/hysts/LoRA-SD-training
https://huggingface.co/spaces/multimodalart/dreambooth-training
"""
from __future__ import annotations

import os
import pathlib

import gradio as gr
import torch
from typing import List

from inference import InferencePipeline
from trainer import Trainer
from uploader import upload


TITLE = "# LoRA + Dreambooth Training and Inference Demo 🎨"
DESCRIPTION = "Demo showcasing parameter-efficient fine-tuning of Stable Dissfusion via Dreambooth leveraging 🤗 PEFT (https://github.com/huggingface/peft)."


ORIGINAL_SPACE_ID = "smangrul/peft-lora-sd-dreambooth"

SPACE_ID = os.getenv("SPACE_ID", ORIGINAL_SPACE_ID)
SHARED_UI_WARNING = f"""# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
"""
if os.getenv("SYSTEM") == "spaces" and SPACE_ID != ORIGINAL_SPACE_ID:
    SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'

else:
    SETTINGS = "Settings"
CUDA_NOT_AVAILABLE_WARNING = f"""# Attention - Running on CPU.
<center>
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
"T4 small" is sufficient to run this demo.
</center>
"""


def show_warning(warning_text: str) -> gr.Blocks:
    with gr.Blocks() as demo:
        with gr.Box():
            gr.Markdown(warning_text)
    return demo


def update_output_files() -> dict:
    paths = sorted(pathlib.Path("results").glob("*.pt"))
    config_paths = sorted(pathlib.Path("results").glob("*.json"))
    paths = paths + config_paths
    paths = [path.as_posix() for path in paths]  # type: ignore
    return gr.update(value=paths or None)


def create_training_demo(trainer: Trainer, pipe: InferencePipeline) -> gr.Blocks:
    with gr.Blocks() as demo:
        base_model = gr.Dropdown(
            choices=[
                "CompVis/stable-diffusion-v1-4",
                "runwayml/stable-diffusion-v1-5",
                "stabilityai/stable-diffusion-2-1-base",
                "dreamlike-art/dreamlike-photoreal-2.0"
            ],
            value="runwayml/stable-diffusion-v1-5",
            label="Base Model",
            visible=True,
        )
        resolution = gr.Dropdown(choices=["512"], value="512", label="Resolution", visible=False)

        with gr.Row():
            with gr.Box():
                gr.Markdown("Training Data")
                concept_images = gr.Files(label="Images for your concept")
                class_images = gr.Files(label="Class images")
                concept_prompt = gr.Textbox(label="Concept Prompt", max_lines=1)
                gr.Markdown(
                    """
                    - Upload images of the style you are planning on training on.
                    - For a concept prompt, use a unique, made up word to avoid collisions.
                    - Guidelines for getting good results:
                        - Dreambooth for an `object` or `style`:
                            - 5-10 images of the object from different angles
                            - 500-800 iterations should be good enough. 
                            - Prior preservation is recommended.
                            - `class_prompt`:
                                - `a photo of object`
                                - `style`
                            - `concept_prompt`:
                                - `<concept prompt> object`
                                - `<concept prompt> style`
                                - `a photo of <concept prompt> object`
                                - `a photo of <concept prompt> style`
                        - Dreambooth for a `Person/Face`:
                            - 15-50 images of the person from different angles, lighting, and expressions. 
                            Have considerable photos with close up faces.
                            - 800-1200 iterations should be good enough.
                            - good defaults for hyperparams
                                - Model - `runwayml/stable-diffusion-v1-5` or `stabilityai/stable-diffusion-2-1-base`
                                - Use/check Prior preservation.
                                - Number of class images to use - 200
                                - Prior Loss Weight - 1
                                - LoRA Rank for unet - 16
                                - LoRA Alpha for unet - 20
                                - lora dropout - 0
                                - LoRA Bias for unet - `all`
                                - LoRA Rank for CLIP - 16
                                - LoRA Alpha for CLIP - 17
                                - LoRA Bias for CLIP - `all`
                                - lora dropout for CLIP - 0
                                - Uncheck `FP16` and `8bit-Adam` (don't use them for faces)
                            - `class_prompt`: Use the gender related word of the person
                                - `man`
                                - `woman`
                                - `boy`
                                - `girl`
                            - `concept_prompt`: just the unique, made up word, e.g., `srm`
                            - Choose `all` for `lora_bias` and `text_encode_lora_bias`
                        - Dreambooth for a `Scene`:
                            - 15-50 images of the scene from different angles, lighting, and expressions.
                            - 800-1200 iterations should be good enough.
                            - Prior preservation is recommended.
                            - `class_prompt`:
                                - `scene`
                                - `landscape`
                                - `city`
                                - `beach`
                                - `mountain`
                            - `concept_prompt`:
                                - `<concept prompt> scene`
                                - `<concept prompt> landscape`
                        - Experiment with various values for lora dropouts, enabling/disabling fp16 and 8bit-Adam
                    """
                )
            with gr.Box():
                gr.Markdown("Training Parameters")
                num_training_steps = gr.Number(label="Number of Training Steps", value=1000, precision=0)
                learning_rate = gr.Number(label="Learning Rate", value=0.0001)
                gradient_checkpointing = gr.Checkbox(label="Whether to use gradient checkpointing", value=True)
                train_text_encoder = gr.Checkbox(label="Train Text Encoder", value=True)
                with_prior_preservation = gr.Checkbox(label="Prior Preservation", value=True)
                class_prompt = gr.Textbox(
                    label="Class Prompt", max_lines=1, placeholder='Example: "a photo of object"'
                )
                num_class_images = gr.Number(label="Number of class images to use", value=50, precision=0)
                prior_loss_weight = gr.Number(label="Prior Loss Weight", value=1.0, precision=1)
                # use_lora = gr.Checkbox(label="Whether to use LoRA", value=True)
                lora_r = gr.Number(label="LoRA Rank for unet", value=4, precision=0)
                lora_alpha = gr.Number(
                    label="LoRA Alpha for unet. scaling factor = lora_alpha/lora_r", value=4, precision=0
                )
                lora_dropout = gr.Number(label="lora dropout", value=0.00)
                lora_bias = gr.Dropdown(
                    choices=["none", "all", "lora_only"],
                    value="none",
                    label="LoRA Bias for unet. This enables bias params to be trainable based on the bias type",
                    visible=True,
                )
                lora_text_encoder_r = gr.Number(label="LoRA Rank for CLIP", value=4, precision=0)
                lora_text_encoder_alpha = gr.Number(
                    label="LoRA Alpha for CLIP. scaling factor = lora_alpha/lora_r", value=4, precision=0
                )
                lora_text_encoder_dropout = gr.Number(label="lora dropout for CLIP", value=0.00)
                lora_text_encoder_bias = gr.Dropdown(
                    choices=["none", "all", "lora_only"],
                    value="none",
                    label="LoRA Bias for CLIP. This enables bias params to be trainable based on the bias type",
                    visible=True,
                )
                gradient_accumulation = gr.Number(label="Number of Gradient Accumulation", value=1, precision=0)
                fp16 = gr.Checkbox(label="FP16", value=True)
                use_8bit_adam = gr.Checkbox(label="Use 8bit Adam", value=True)
                gr.Markdown(
                    """
                    - It will take about 20-30 minutes to train for 1000 steps with a T4 GPU.
                    - You may want to try a small number of steps first, like 1, to see if everything works fine in your environment.
                    - Note that your trained models will be deleted when the second training is started. You can upload your trained model in the "Upload" tab.
                    """
                )

        run_button = gr.Button("Start Training")
        with gr.Box():
            with gr.Row():
                check_status_button = gr.Button("Check Training Status")
                with gr.Column():
                    with gr.Box():
                        gr.Markdown("Message")
                        training_status = gr.Markdown()
                    output_files = gr.Files(label="Trained Weight Files and Configs")

        run_button.click(fn=pipe.clear)

        run_button.click(
            fn=trainer.run,
            inputs=[
                base_model,
                resolution,
                num_training_steps,
                concept_images,
                concept_prompt,
                class_images,
                learning_rate,
                gradient_accumulation,
                fp16,
                use_8bit_adam,
                gradient_checkpointing,
                train_text_encoder,
                with_prior_preservation,
                prior_loss_weight,
                class_prompt,
                num_class_images,
                lora_r,
                lora_alpha,
                lora_bias,
                lora_dropout,
                lora_text_encoder_r,
                lora_text_encoder_alpha,
                lora_text_encoder_bias,
                lora_text_encoder_dropout,
            ],
            outputs=[
                training_status,
                output_files,
            ],
            queue=False,
        )
        check_status_button.click(fn=trainer.check_if_running, inputs=None, outputs=training_status, queue=False)
        check_status_button.click(fn=update_output_files, inputs=None, outputs=output_files, queue=False)
    return demo


def find_weight_files() -> List[str]:
    curr_dir = pathlib.Path(__file__).parent
    paths = sorted(curr_dir.rglob("*.pt"))
    return [path.relative_to(curr_dir).as_posix() for path in paths]


def reload_lora_weight_list() -> dict:
    return gr.update(choices=find_weight_files())


def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                base_model = gr.Dropdown(
                    choices=[
                        "CompVis/stable-diffusion-v1-4",
                        "runwayml/stable-diffusion-v1-5",
                        "stabilityai/stable-diffusion-2-1-base",
                        "dreamlike-art/dreamlike-photoreal-2.0"
                    ],
                    value="runwayml/stable-diffusion-v1-5",
                    label="Base Model",
                    visible=True,
                )
                reload_button = gr.Button("Reload Weight List")
                lora_weight_name = gr.Dropdown(
                    choices=find_weight_files(), value="lora/lora_disney.pt", label="LoRA Weight File"
                )
                prompt = gr.Textbox(label="Prompt", max_lines=1, placeholder='Example: "style of sks, baby lion"')
                negative_prompt = gr.Textbox(
                    label="Negative Prompt", max_lines=1, placeholder='Example: "blurry, botched, low quality"'
                )
                seed = gr.Slider(label="Seed", minimum=0, maximum=100000, step=1, value=1)
                with gr.Accordion("Other Parameters", open=False):
                    num_steps = gr.Slider(label="Number of Steps", minimum=0, maximum=1000, step=1, value=50)
                    guidance_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=50, step=0.1, value=7)

                run_button = gr.Button("Generate")

                gr.Markdown(
                    """
                - After training, you can press "Reload Weight List" button to load your trained model names.
                - Few repos to refer for ideas:
                    - https://huggingface.co/smangrul/smangrul
                    - https://huggingface.co/smangrul/painting-in-the-style-of-smangrul
                    - https://huggingface.co/smangrul/erenyeager
                """
                )
            with gr.Column():
                result = gr.Image(label="Result")

        reload_button.click(fn=reload_lora_weight_list, inputs=None, outputs=lora_weight_name)
        prompt.submit(
            fn=pipe.run,
            inputs=[
                base_model,
                lora_weight_name,
                prompt,
                negative_prompt,
                seed,
                num_steps,
                guidance_scale,
            ],
            outputs=result,
            queue=False,
        )
        run_button.click(
            fn=pipe.run,
            inputs=[
                base_model,
                lora_weight_name,
                prompt,
                negative_prompt,
                seed,
                num_steps,
                guidance_scale,
            ],
            outputs=result,
            queue=False,
        )
        seed.change(
            fn=pipe.run,
            inputs=[
                base_model,
                lora_weight_name,
                prompt,
                negative_prompt,
                seed,
                num_steps,
                guidance_scale,
            ],
            outputs=result,
            queue=False,
        )
    return demo


def create_upload_demo() -> gr.Blocks:
    with gr.Blocks() as demo:
        model_name = gr.Textbox(label="Model Name")
        hf_token = gr.Textbox(label="Hugging Face Token (with write permission)")
        upload_button = gr.Button("Upload")
        with gr.Box():
            gr.Markdown("Message")
            result = gr.Markdown()
        gr.Markdown(
            """
            - You can upload your trained model to your private Model repo (i.e. https://huggingface.co/{your_username}/{model_name}).
            - You can find your Hugging Face token [here](https://huggingface.co/settings/tokens).
            """
        )

    upload_button.click(fn=upload, inputs=[model_name, hf_token], outputs=result)

    return demo


pipe = InferencePipeline()
trainer = Trainer()

with gr.Blocks(css="style.css") as demo:
    if os.getenv("IS_SHARED_UI"):
        show_warning(SHARED_UI_WARNING)
    if not torch.cuda.is_available():
        show_warning(CUDA_NOT_AVAILABLE_WARNING)

    gr.Markdown(TITLE)
    gr.Markdown(DESCRIPTION)

    with gr.Tabs():
        with gr.TabItem("Train"):
            create_training_demo(trainer, pipe)
        with gr.TabItem("Test"):
            create_inference_demo(pipe)
        with gr.TabItem("Upload"):
            create_upload_demo()

demo.queue(default_enabled=False).launch(share=False)