Spaces:
Sleeping
Sleeping
File size: 949 Bytes
04d0b60 6288425 04d0b60 6288425 04d0b60 6288425 04d0b60 6288425 04d0b60 6288425 04d0b60 6288425 04d0b60 6288425 04d0b60 6288425 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import gradio as gr
from transformers import RagTokenizer, RagTokenForGeneration
# Load tokenizer and model
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq")
def rag_generate(query):
# Tokenize the input question
inputs = tokenizer(query, return_tensors="pt")
# Generate output
generated_ids = model.generate(**inputs)
# Decode the generated response
answer = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return answer
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# 🤖 RAG Token QA with facebook/rag-token-nq")
with gr.Row():
question = gr.Textbox(label="Ask your question")
with gr.Row():
answer = gr.Textbox(label="Answer")
submit_btn = gr.Button("Generate Answer")
submit_btn.click(fn=rag_generate, inputs=question, outputs=answer)
demo.launch()
|