Spaces:
Sleeping
Sleeping
File size: 35,532 Bytes
33d4721 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 |
import ast
from dataclasses import dataclass
from typing import Optional
import pandas as pd
from datasets import ClassLabel, Dataset, DatasetDict, Sequence
from sklearn.model_selection import train_test_split
from autotrain import logger
RESERVED_COLUMNS = ["autotrain_text", "autotrain_label", "autotrain_question", "autotrain_answer"]
LLM_RESERVED_COLUMNS = [
"autotrain_prompt",
"autotrain_context",
"autotrain_rejected_text",
"autotrain_prompt_start",
]
@dataclass
class TextBinaryClassificationPreprocessor:
"""
A preprocessor class for binary text classification tasks.
Attributes:
train_data (pd.DataFrame): The training data.
text_column (str): The name of the column containing text data.
label_column (str): The name of the column containing label data.
username (str): The username for the Hugging Face Hub.
project_name (str): The project name for saving datasets.
token (str): The authentication token for the Hugging Face Hub.
valid_data (Optional[pd.DataFrame]): The validation data. Defaults to None.
test_size (Optional[float]): The proportion of the dataset to include in the validation split. Defaults to 0.2.
seed (Optional[int]): The random seed for splitting the data. Defaults to 42.
convert_to_class_label (Optional[bool]): Whether to convert labels to class labels. Defaults to False.
local (Optional[bool]): Whether to save the dataset locally. Defaults to False.
Methods:
__post_init__(): Validates the presence of required columns in the dataframes and checks for reserved column names.
split(): Splits the training data into training and validation sets if validation data is not provided.
prepare_columns(train_df, valid_df): Prepares the columns for training and validation dataframes.
prepare(): Prepares the datasets for training and validation, converts labels if required, and saves or uploads the datasets.
"""
train_data: pd.DataFrame
text_column: str
label_column: str
username: str
project_name: str
token: str
valid_data: Optional[pd.DataFrame] = None
test_size: Optional[float] = 0.2
seed: Optional[int] = 42
convert_to_class_label: Optional[bool] = False
local: Optional[bool] = False
def __post_init__(self):
# check if text_column and label_column are in train_data
if self.text_column not in self.train_data.columns:
raise ValueError(f"{self.text_column} not in train data")
if self.label_column not in self.train_data.columns:
raise ValueError(f"{self.label_column} not in train data")
# check if text_column and label_column are in valid_data
if self.valid_data is not None:
if self.text_column not in self.valid_data.columns:
raise ValueError(f"{self.text_column} not in valid data")
if self.label_column not in self.valid_data.columns:
raise ValueError(f"{self.label_column} not in valid data")
# make sure no reserved columns are in train_data or valid_data
for column in RESERVED_COLUMNS:
if column in self.train_data.columns:
raise ValueError(f"{column} is a reserved column name")
if self.valid_data is not None:
if column in self.valid_data.columns:
raise ValueError(f"{column} is a reserved column name")
def split(self):
if self.valid_data is not None:
return self.train_data, self.valid_data
else:
train_df, valid_df = train_test_split(
self.train_data,
test_size=self.test_size,
random_state=self.seed,
stratify=self.train_data[self.label_column],
)
train_df = train_df.reset_index(drop=True)
valid_df = valid_df.reset_index(drop=True)
return train_df, valid_df
def prepare_columns(self, train_df, valid_df):
train_df.loc[:, "autotrain_text"] = train_df[self.text_column]
train_df.loc[:, "autotrain_label"] = train_df[self.label_column]
valid_df.loc[:, "autotrain_text"] = valid_df[self.text_column]
valid_df.loc[:, "autotrain_label"] = valid_df[self.label_column]
# drop text_column and label_column
train_df = train_df.drop(columns=[self.text_column, self.label_column])
valid_df = valid_df.drop(columns=[self.text_column, self.label_column])
return train_df, valid_df
def prepare(self):
train_df, valid_df = self.split()
train_df, valid_df = self.prepare_columns(train_df, valid_df)
train_df.loc[:, "autotrain_label"] = train_df["autotrain_label"].astype(str)
valid_df.loc[:, "autotrain_label"] = valid_df["autotrain_label"].astype(str)
label_names = sorted(set(train_df["autotrain_label"].unique().tolist()))
train_df = Dataset.from_pandas(train_df)
valid_df = Dataset.from_pandas(valid_df)
if self.convert_to_class_label:
train_df = train_df.cast_column("autotrain_label", ClassLabel(names=label_names))
valid_df = valid_df.cast_column("autotrain_label", ClassLabel(names=label_names))
if self.local:
dataset = DatasetDict(
{
"train": train_df,
"validation": valid_df,
}
)
dataset.save_to_disk(f"{self.project_name}/autotrain-data")
else:
train_df.push_to_hub(
f"{self.username}/autotrain-data-{self.project_name}",
split="train",
private=True,
token=self.token,
)
valid_df.push_to_hub(
f"{self.username}/autotrain-data-{self.project_name}",
split="validation",
private=True,
token=self.token,
)
if self.local:
return f"{self.project_name}/autotrain-data"
return f"{self.username}/autotrain-data-{self.project_name}"
class TextMultiClassClassificationPreprocessor(TextBinaryClassificationPreprocessor):
"""
TextMultiClassClassificationPreprocessor is a class for preprocessing text data for multi-class classification tasks.
This class inherits from TextBinaryClassificationPreprocessor and is designed to handle scenarios where the text data
needs to be classified into more than two categories.
Methods:
Inherits all methods from TextBinaryClassificationPreprocessor.
Attributes:
Inherits all attributes from TextBinaryClassificationPreprocessor.
"""
pass
class TextSingleColumnRegressionPreprocessor(TextBinaryClassificationPreprocessor):
"""
A preprocessor class for single-column regression tasks, inheriting from TextBinaryClassificationPreprocessor.
Methods
-------
split():
Splits the training data into training and validation sets. If validation data is already provided, it returns
the training and validation data as is. Otherwise, it performs a train-test split on the training data.
prepare():
Prepares the training and validation datasets by splitting the data, preparing the columns, and converting
them to Hugging Face Datasets. The datasets are then either saved locally or pushed to the Hugging Face Hub,
depending on the `local` attribute.
"""
def split(self):
if self.valid_data is not None:
return self.train_data, self.valid_data
else:
train_df, valid_df = train_test_split(
self.train_data,
test_size=self.test_size,
random_state=self.seed,
)
train_df = train_df.reset_index(drop=True)
valid_df = valid_df.reset_index(drop=True)
return train_df, valid_df
def prepare(self):
train_df, valid_df = self.split()
train_df, valid_df = self.prepare_columns(train_df, valid_df)
train_df = Dataset.from_pandas(train_df)
valid_df = Dataset.from_pandas(valid_df)
if self.local:
dataset = DatasetDict(
{
"train": train_df,
"validation": valid_df,
}
)
dataset.save_to_disk(f"{self.project_name}/autotrain-data")
else:
train_df.push_to_hub(
f"{self.username}/autotrain-data-{self.project_name}",
split="train",
private=True,
token=self.token,
)
valid_df.push_to_hub(
f"{self.username}/autotrain-data-{self.project_name}",
split="validation",
private=True,
token=self.token,
)
if self.local:
return f"{self.project_name}/autotrain-data"
return f"{self.username}/autotrain-data-{self.project_name}"
class TextTokenClassificationPreprocessor(TextBinaryClassificationPreprocessor):
"""
A preprocessor class for text token classification tasks, inheriting from TextBinaryClassificationPreprocessor.
Methods
-------
split():
Splits the training data into training and validation sets. If validation data is already provided, it returns
the training and validation data as is. Otherwise, it splits the training data based on the test size and seed.
prepare():
Prepares the training and validation data for token classification. This includes splitting the data, preparing
columns, evaluating text and label columns, and converting them to datasets. The datasets are then either saved
locally or pushed to the Hugging Face Hub based on the configuration.
"""
def split(self):
if self.valid_data is not None:
return self.train_data, self.valid_data
else:
train_df, valid_df = train_test_split(
self.train_data,
test_size=self.test_size,
random_state=self.seed,
)
train_df = train_df.reset_index(drop=True)
valid_df = valid_df.reset_index(drop=True)
return train_df, valid_df
def prepare(self):
train_df, valid_df = self.split()
train_df, valid_df = self.prepare_columns(train_df, valid_df)
try:
train_df.loc[:, "autotrain_text"] = train_df["autotrain_text"].apply(lambda x: ast.literal_eval(x))
valid_df.loc[:, "autotrain_text"] = valid_df["autotrain_text"].apply(lambda x: ast.literal_eval(x))
except ValueError:
logger.warning("Unable to do ast.literal_eval on train_df['autotrain_text']")
logger.warning("assuming autotrain_text is already a list")
try:
train_df.loc[:, "autotrain_label"] = train_df["autotrain_label"].apply(lambda x: ast.literal_eval(x))
valid_df.loc[:, "autotrain_label"] = valid_df["autotrain_label"].apply(lambda x: ast.literal_eval(x))
except ValueError:
logger.warning("Unable to do ast.literal_eval on train_df['autotrain_label']")
logger.warning("assuming autotrain_label is already a list")
label_names_train = sorted(set(train_df["autotrain_label"].explode().unique().tolist()))
label_names_valid = sorted(set(valid_df["autotrain_label"].explode().unique().tolist()))
label_names = sorted(set(label_names_train + label_names_valid))
train_df = Dataset.from_pandas(train_df)
valid_df = Dataset.from_pandas(valid_df)
if self.convert_to_class_label:
train_df = train_df.cast_column("autotrain_label", Sequence(ClassLabel(names=label_names)))
valid_df = valid_df.cast_column("autotrain_label", Sequence(ClassLabel(names=label_names)))
if self.local:
dataset = DatasetDict(
{
"train": train_df,
"validation": valid_df,
}
)
dataset.save_to_disk(f"{self.project_name}/autotrain-data")
else:
train_df.push_to_hub(
f"{self.username}/autotrain-data-{self.project_name}",
split="train",
private=True,
token=self.token,
)
valid_df.push_to_hub(
f"{self.username}/autotrain-data-{self.project_name}",
split="validation",
private=True,
token=self.token,
)
if self.local:
return f"{self.project_name}/autotrain-data"
return f"{self.username}/autotrain-data-{self.project_name}"
@dataclass
class LLMPreprocessor:
"""
A class used to preprocess data for large language model (LLM) training.
Attributes
----------
train_data : pd.DataFrame
The training data.
username : str
The username for the Hugging Face Hub.
project_name : str
The name of the project.
token : str
The token for authentication.
valid_data : Optional[pd.DataFrame], optional
The validation data, by default None.
test_size : Optional[float], optional
The size of the test split, by default 0.2.
seed : Optional[int], optional
The random seed, by default 42.
text_column : Optional[str], optional
The name of the text column, by default None.
prompt_column : Optional[str], optional
The name of the prompt column, by default None.
rejected_text_column : Optional[str], optional
The name of the rejected text column, by default None.
local : Optional[bool], optional
Whether to save the dataset locally, by default False.
Methods
-------
__post_init__()
Validates the provided columns and checks for reserved column names.
split()
Splits the data into training and validation sets.
prepare_columns(train_df, valid_df)
Prepares the columns for training and validation datasets.
prepare()
Prepares the datasets and pushes them to the Hugging Face Hub or saves them locally.
"""
train_data: pd.DataFrame
username: str
project_name: str
token: str
valid_data: Optional[pd.DataFrame] = None
test_size: Optional[float] = 0.2
seed: Optional[int] = 42
text_column: Optional[str] = None
prompt_column: Optional[str] = None
rejected_text_column: Optional[str] = None
local: Optional[bool] = False
def __post_init__(self):
if self.text_column is None:
raise ValueError("text_column must be provided")
# check if text_column and rejected_text_column are in train_data
if self.prompt_column is not None and self.prompt_column not in self.train_data.columns:
self.prompt_column = None
if self.rejected_text_column is not None and self.rejected_text_column not in self.train_data.columns:
self.rejected_text_column = None
# make sure no reserved columns are in train_data or valid_data
for column in RESERVED_COLUMNS + LLM_RESERVED_COLUMNS:
if column in self.train_data.columns:
raise ValueError(f"{column} is a reserved column name")
if self.valid_data is not None:
if column in self.valid_data.columns:
raise ValueError(f"{column} is a reserved column name")
def split(self):
if self.valid_data is not None:
return self.train_data, self.valid_data
# no validation is done in llm training if validation data is not provided
return self.train_data, self.train_data
# else:
# train_df, valid_df = train_test_split(
# self.train_data,
# test_size=self.test_size,
# random_state=self.seed,
# )
# train_df = train_df.reset_index(drop=True)
# valid_df = valid_df.reset_index(drop=True)
# return train_df, valid_df
def prepare_columns(self, train_df, valid_df):
drop_cols = [self.text_column]
train_df.loc[:, "autotrain_text"] = train_df[self.text_column]
valid_df.loc[:, "autotrain_text"] = valid_df[self.text_column]
if self.prompt_column is not None:
drop_cols.append(self.prompt_column)
train_df.loc[:, "autotrain_prompt"] = train_df[self.prompt_column]
valid_df.loc[:, "autotrain_prompt"] = valid_df[self.prompt_column]
if self.rejected_text_column is not None:
drop_cols.append(self.rejected_text_column)
train_df.loc[:, "autotrain_rejected_text"] = train_df[self.rejected_text_column]
valid_df.loc[:, "autotrain_rejected_text"] = valid_df[self.rejected_text_column]
# drop drop_cols
train_df = train_df.drop(columns=drop_cols)
valid_df = valid_df.drop(columns=drop_cols)
return train_df, valid_df
def prepare(self):
train_df, valid_df = self.split()
train_df, valid_df = self.prepare_columns(train_df, valid_df)
train_df = Dataset.from_pandas(train_df)
valid_df = Dataset.from_pandas(valid_df)
if self.local:
dataset = DatasetDict(
{
"train": train_df,
"validation": valid_df,
}
)
dataset.save_to_disk(f"{self.project_name}/autotrain-data")
else:
train_df.push_to_hub(
f"{self.username}/autotrain-data-{self.project_name}",
split="train",
private=True,
token=self.token,
)
valid_df.push_to_hub(
f"{self.username}/autotrain-data-{self.project_name}",
split="validation",
private=True,
token=self.token,
)
if self.local:
return f"{self.project_name}/autotrain-data"
return f"{self.username}/autotrain-data-{self.project_name}"
@dataclass
class Seq2SeqPreprocessor:
"""
Seq2SeqPreprocessor is a class for preprocessing sequence-to-sequence training data.
Attributes:
train_data (pd.DataFrame): The training data.
text_column (str): The name of the column containing the input text.
label_column (str): The name of the column containing the labels.
username (str): The username for pushing data to the hub.
project_name (str): The name of the project.
token (str): The token for authentication.
valid_data (Optional[pd.DataFrame]): The validation data. Default is None.
test_size (Optional[float]): The proportion of the dataset to include in the validation split. Default is 0.2.
seed (Optional[int]): The random seed for splitting the data. Default is 42.
local (Optional[bool]): Whether to save the dataset locally or push to the hub. Default is False.
Methods:
__post_init__(): Validates the presence of required columns in the training and validation data.
split(): Splits the training data into training and validation sets if validation data is not provided.
prepare_columns(train_df, valid_df): Prepares the columns for training and validation data.
prepare(): Prepares the dataset for training by splitting, preparing columns, and converting to Dataset objects.
"""
train_data: pd.DataFrame
text_column: str
label_column: str
username: str
project_name: str
token: str
valid_data: Optional[pd.DataFrame] = None
test_size: Optional[float] = 0.2
seed: Optional[int] = 42
local: Optional[bool] = False
def __post_init__(self):
# check if text_column and label_column are in train_data
if self.text_column not in self.train_data.columns:
raise ValueError(f"{self.text_column} not in train data")
if self.label_column not in self.train_data.columns:
raise ValueError(f"{self.label_column} not in train data")
# check if text_column and label_column are in valid_data
if self.valid_data is not None:
if self.text_column not in self.valid_data.columns:
raise ValueError(f"{self.text_column} not in valid data")
if self.label_column not in self.valid_data.columns:
raise ValueError(f"{self.label_column} not in valid data")
# make sure no reserved columns are in train_data or valid_data
for column in RESERVED_COLUMNS:
if column in self.train_data.columns:
raise ValueError(f"{column} is a reserved column name")
if self.valid_data is not None:
if column in self.valid_data.columns:
raise ValueError(f"{column} is a reserved column name")
def split(self):
if self.valid_data is not None:
return self.train_data, self.valid_data
else:
train_df, valid_df = train_test_split(
self.train_data,
test_size=self.test_size,
random_state=self.seed,
)
train_df = train_df.reset_index(drop=True)
valid_df = valid_df.reset_index(drop=True)
return train_df, valid_df
def prepare_columns(self, train_df, valid_df):
train_df.loc[:, "autotrain_text"] = train_df[self.text_column]
train_df.loc[:, "autotrain_label"] = train_df[self.label_column]
valid_df.loc[:, "autotrain_text"] = valid_df[self.text_column]
valid_df.loc[:, "autotrain_label"] = valid_df[self.label_column]
# drop text_column and label_column
train_df = train_df.drop(columns=[self.text_column, self.label_column])
valid_df = valid_df.drop(columns=[self.text_column, self.label_column])
return train_df, valid_df
def prepare(self):
train_df, valid_df = self.split()
train_df, valid_df = self.prepare_columns(train_df, valid_df)
train_df = Dataset.from_pandas(train_df)
valid_df = Dataset.from_pandas(valid_df)
if self.local:
dataset = DatasetDict(
{
"train": train_df,
"validation": valid_df,
}
)
dataset.save_to_disk(f"{self.project_name}/autotrain-data")
else:
train_df.push_to_hub(
f"{self.username}/autotrain-data-{self.project_name}",
split="train",
private=True,
token=self.token,
)
valid_df.push_to_hub(
f"{self.username}/autotrain-data-{self.project_name}",
split="validation",
private=True,
token=self.token,
)
if self.local:
return f"{self.project_name}/autotrain-data"
return f"{self.username}/autotrain-data-{self.project_name}"
@dataclass
class SentenceTransformersPreprocessor:
"""
A preprocessor class for preparing datasets for sentence transformers.
Attributes:
train_data (pd.DataFrame): The training data.
username (str): The username for the Hugging Face Hub.
project_name (str): The project name for the Hugging Face Hub.
token (str): The token for authentication with the Hugging Face Hub.
valid_data (Optional[pd.DataFrame]): The validation data. Default is None.
test_size (Optional[float]): The proportion of the dataset to include in the validation split. Default is 0.2.
seed (Optional[int]): The random seed for splitting the data. Default is 42.
local (Optional[bool]): Whether to save the dataset locally or push to the Hugging Face Hub. Default is False.
sentence1_column (Optional[str]): The name of the first sentence column. Default is "sentence1".
sentence2_column (Optional[str]): The name of the second sentence column. Default is "sentence2".
sentence3_column (Optional[str]): The name of the third sentence column. Default is "sentence3".
target_column (Optional[str]): The name of the target column. Default is "target".
convert_to_class_label (Optional[bool]): Whether to convert the target column to class labels. Default is False.
Methods:
__post_init__(): Ensures no reserved columns are in train_data or valid_data.
split(): Splits the train_data into training and validation sets if valid_data is not provided.
prepare_columns(train_df, valid_df): Prepares the columns for training and validation datasets.
prepare(): Prepares the datasets and either saves them locally or pushes them to the Hugging Face Hub.
"""
train_data: pd.DataFrame
username: str
project_name: str
token: str
valid_data: Optional[pd.DataFrame] = None
test_size: Optional[float] = 0.2
seed: Optional[int] = 42
local: Optional[bool] = False
sentence1_column: Optional[str] = "sentence1"
sentence2_column: Optional[str] = "sentence2"
sentence3_column: Optional[str] = "sentence3"
target_column: Optional[str] = "target"
convert_to_class_label: Optional[bool] = False
def __post_init__(self):
# make sure no reserved columns are in train_data or valid_data
for column in RESERVED_COLUMNS + LLM_RESERVED_COLUMNS:
if column in self.train_data.columns:
raise ValueError(f"{column} is a reserved column name")
if self.valid_data is not None:
if column in self.valid_data.columns:
raise ValueError(f"{column} is a reserved column name")
def split(self):
if self.valid_data is not None:
return self.train_data, self.valid_data
else:
train_df, valid_df = train_test_split(
self.train_data,
test_size=self.test_size,
random_state=self.seed,
)
train_df = train_df.reset_index(drop=True)
valid_df = valid_df.reset_index(drop=True)
return train_df, valid_df
def prepare_columns(self, train_df, valid_df):
train_df.loc[:, "autotrain_sentence1"] = train_df[self.sentence1_column]
train_df.loc[:, "autotrain_sentence2"] = train_df[self.sentence2_column]
valid_df.loc[:, "autotrain_sentence1"] = valid_df[self.sentence1_column]
valid_df.loc[:, "autotrain_sentence2"] = valid_df[self.sentence2_column]
keep_cols = ["autotrain_sentence1", "autotrain_sentence2"]
if self.sentence3_column is not None:
train_df.loc[:, "autotrain_sentence3"] = train_df[self.sentence3_column]
valid_df.loc[:, "autotrain_sentence3"] = valid_df[self.sentence3_column]
keep_cols.append("autotrain_sentence3")
if self.target_column is not None:
train_df.loc[:, "autotrain_target"] = train_df[self.target_column]
valid_df.loc[:, "autotrain_target"] = valid_df[self.target_column]
keep_cols.append("autotrain_target")
train_df = train_df[keep_cols]
valid_df = valid_df[keep_cols]
return train_df, valid_df
def prepare(self):
train_df, valid_df = self.split()
train_df, valid_df = self.prepare_columns(train_df, valid_df)
if self.convert_to_class_label:
label_names = sorted(set(train_df["autotrain_target"].unique().tolist()))
train_df = Dataset.from_pandas(train_df)
valid_df = Dataset.from_pandas(valid_df)
if self.convert_to_class_label:
train_df = train_df.cast_column("autotrain_target", ClassLabel(names=label_names))
valid_df = valid_df.cast_column("autotrain_target", ClassLabel(names=label_names))
if self.local:
dataset = DatasetDict(
{
"train": train_df,
"validation": valid_df,
}
)
dataset.save_to_disk(f"{self.project_name}/autotrain-data")
else:
train_df.push_to_hub(
f"{self.username}/autotrain-data-{self.project_name}",
split="train",
private=True,
token=self.token,
)
valid_df.push_to_hub(
f"{self.username}/autotrain-data-{self.project_name}",
split="validation",
private=True,
token=self.token,
)
if self.local:
return f"{self.project_name}/autotrain-data"
return f"{self.username}/autotrain-data-{self.project_name}"
@dataclass
class TextExtractiveQuestionAnsweringPreprocessor:
"""
Preprocessor for text extractive question answering tasks.
Attributes:
train_data (pd.DataFrame): The training data.
text_column (str): The name of the text column in the data.
question_column (str): The name of the question column in the data.
answer_column (str): The name of the answer column in the data.
username (str): The username for the Hugging Face Hub.
project_name (str): The project name for the Hugging Face Hub.
token (str): The token for authentication with the Hugging Face Hub.
valid_data (Optional[pd.DataFrame]): The validation data. Default is None.
test_size (Optional[float]): The proportion of the dataset to include in the validation split. Default is 0.2.
seed (Optional[int]): The random seed for splitting the data. Default is 42.
local (Optional[bool]): Whether to save the dataset locally or push to the Hugging Face Hub. Default is False.
Methods:
__post_init__(): Validates the columns in the training and validation data and converts the answer column to a dictionary.
split(): Splits the training data into training and validation sets if validation data is not provided.
prepare_columns(train_df, valid_df): Prepares the columns for training and validation data.
prepare(): Prepares the dataset for training by splitting, preparing columns, and converting to Hugging Face Dataset format.
"""
train_data: pd.DataFrame
text_column: str
question_column: str
answer_column: str
username: str
project_name: str
token: str
valid_data: Optional[pd.DataFrame] = None
test_size: Optional[float] = 0.2
seed: Optional[int] = 42
local: Optional[bool] = False
def __post_init__(self):
# check if text_column, question_column, and answer_column are in train_data
if self.text_column not in self.train_data.columns:
raise ValueError(f"{self.text_column} not in train data")
if self.question_column not in self.train_data.columns:
raise ValueError(f"{self.question_column} not in train data")
if self.answer_column not in self.train_data.columns:
raise ValueError(f"{self.answer_column} not in train data")
# check if text_column, question_column, and answer_column are in valid_data
if self.valid_data is not None:
if self.text_column not in self.valid_data.columns:
raise ValueError(f"{self.text_column} not in valid data")
if self.question_column not in self.valid_data.columns:
raise ValueError(f"{self.question_column} not in valid data")
if self.answer_column not in self.valid_data.columns:
raise ValueError(f"{self.answer_column} not in valid data")
# make sure no reserved columns are in train_data or valid_data
for column in RESERVED_COLUMNS:
if column in self.train_data.columns:
raise ValueError(f"{column} is a reserved column name")
if self.valid_data is not None:
if column in self.valid_data.columns:
raise ValueError(f"{column} is a reserved column name")
# convert answer_column to dict
try:
self.train_data.loc[:, self.answer_column] = self.train_data[self.answer_column].apply(
lambda x: ast.literal_eval(x)
)
except ValueError:
logger.warning("Unable to do ast.literal_eval on train_data[answer_column]")
logger.warning("assuming answer_column is already a dict")
if self.valid_data is not None:
try:
self.valid_data.loc[:, self.answer_column] = self.valid_data[self.answer_column].apply(
lambda x: ast.literal_eval(x)
)
except ValueError:
logger.warning("Unable to do ast.literal_eval on valid_data[answer_column]")
logger.warning("assuming answer_column is already a dict")
def split(self):
if self.valid_data is not None:
return self.train_data, self.valid_data
else:
train_df, valid_df = train_test_split(
self.train_data,
test_size=self.test_size,
random_state=self.seed,
)
train_df = train_df.reset_index(drop=True)
valid_df = valid_df.reset_index(drop=True)
return train_df, valid_df
def prepare_columns(self, train_df, valid_df):
train_df.loc[:, "autotrain_text"] = train_df[self.text_column]
train_df.loc[:, "autotrain_question"] = train_df[self.question_column]
train_df.loc[:, "autotrain_answer"] = train_df[self.answer_column]
valid_df.loc[:, "autotrain_text"] = valid_df[self.text_column]
valid_df.loc[:, "autotrain_question"] = valid_df[self.question_column]
valid_df.loc[:, "autotrain_answer"] = valid_df[self.answer_column]
# drop all other columns
train_df = train_df.drop(
columns=[
x for x in train_df.columns if x not in ["autotrain_text", "autotrain_question", "autotrain_answer"]
]
)
valid_df = valid_df.drop(
columns=[
x for x in valid_df.columns if x not in ["autotrain_text", "autotrain_question", "autotrain_answer"]
]
)
return train_df, valid_df
def prepare(self):
train_df, valid_df = self.split()
train_df, valid_df = self.prepare_columns(train_df, valid_df)
train_df = Dataset.from_pandas(train_df)
valid_df = Dataset.from_pandas(valid_df)
if self.local:
dataset = DatasetDict(
{
"train": train_df,
"validation": valid_df,
}
)
dataset.save_to_disk(f"{self.project_name}/autotrain-data")
else:
train_df.push_to_hub(
f"{self.username}/autotrain-data-{self.project_name}",
split="train",
private=True,
token=self.token,
)
valid_df.push_to_hub(
f"{self.username}/autotrain-data-{self.project_name}",
split="validation",
private=True,
token=self.token,
)
if self.local:
return f"{self.project_name}/autotrain-data"
return f"{self.username}/autotrain-data-{self.project_name}"
|