Spaces:
Running
Running
File size: 9,000 Bytes
7c3be27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import LatentDirichletAllocation
from sklearn.metrics import silhouette_score
from collections import defaultdict
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
def generate_embeddings(df, content_column):
"""
Generate embeddings for the content using SentenceTransformer.
"""
print("π’ Generating embeddings for clustering...")
model = SentenceTransformer('all-MiniLM-L6-v2')
embeddings = model.encode(df[content_column].tolist(), show_progress_bar=True)
return embeddings
def determine_optimum_clusters(embeddings, min_clusters=2, max_clusters=10):
"""
Determine the optimum number of clusters using silhouette analysis.
"""
print("π Determining the optimum number of clusters using silhouette analysis...")
n_samples = len(embeddings)
if n_samples < 2:
raise ValueError("Not enough samples to perform clustering. At least 2 samples are required.")
# Adjust max_clusters to ensure it does not exceed n_samples - 1
max_clusters = min(max_clusters, n_samples - 1)
best_num_clusters = min_clusters
best_score = -1
for n_clusters in range(min_clusters, max_clusters + 1):
try:
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
cluster_labels = kmeans.fit_predict(embeddings)
score = silhouette_score(embeddings, cluster_labels)
print(f"Number of clusters: {n_clusters}, Silhouette Score: {score:.4f}")
if score > best_score:
best_score = score
best_num_clusters = n_clusters
except ValueError as e:
print(f"Skipping {n_clusters} clusters due to error: {e}")
print(f"β
Optimum number of clusters determined: {best_num_clusters}")
return best_num_clusters
def cluster_embeddings(embeddings, num_clusters):
"""
Perform KMeans clustering on the embeddings.
"""
print(f"π Clustering articles into {num_clusters} clusters using KMeans...")
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
kmeans.fit(embeddings)
return kmeans.labels_, kmeans
def extract_tfidf_labels(df, content_column, cluster_labels):
"""
Extract top TF-IDF keywords for each cluster.
"""
print("π Extracting TF-IDF-based keywords for cluster labels...")
grouped = defaultdict(list)
for idx, label in enumerate(cluster_labels):
grouped[label].append(df.iloc[idx][content_column])
tfidf_labels = {}
for cluster_id, texts in grouped.items():
vectorizer = TfidfVectorizer(ngram_range=(1, 2), stop_words="english", max_features=50)
tfidf_matrix = vectorizer.fit_transform(texts)
avg_tfidf = tfidf_matrix.mean(axis=0).A1
top_indices = np.argsort(avg_tfidf)[::-1][:3]
top_terms = [vectorizer.get_feature_names_out()[i] for i in top_indices]
tfidf_labels[cluster_id] = ", ".join(top_terms)
return tfidf_labels
def apply_topic_modeling(df, content_column, cluster_labels, num_topics=2):
"""
Apply topic modeling (LDA) within each cluster to refine and describe topics.
"""
print("π Applying topic modeling within each cluster...")
grouped = defaultdict(list)
for idx, label in enumerate(cluster_labels):
grouped[label].append(df.iloc[idx][content_column])
topic_labels = {}
for cluster_id, texts in grouped.items():
vectorizer = TfidfVectorizer(ngram_range=(1, 2), stop_words="english", max_features=5000)
tfidf_matrix = vectorizer.fit_transform(texts)
lda = LatentDirichletAllocation(n_components=num_topics, random_state=42)
lda.fit(tfidf_matrix)
# Extract top words for each topic
feature_names = vectorizer.get_feature_names_out()
topics = []
for topic_idx, topic in enumerate(lda.components_):
top_indices = topic.argsort()[:-4:-1]
topics.append(", ".join([feature_names[i] for i in top_indices]))
topic_labels[cluster_id] = " | ".join(topics)
return topic_labels
def filter_similar_topics(topic_keywords_list, threshold=0.75):
"""
Filter out similar topics based on cosine similarity of their embeddings.
"""
print("π Filtering similar topics...")
model = SentenceTransformer('all-MiniLM-L6-v2')
topic_sentences = [", ".join(kw) for kw in topic_keywords_list]
embeddings = model.encode(topic_sentences)
unique_indices = []
for i, emb in enumerate(embeddings):
if all(cosine_similarity([emb], [embeddings[j]])[0][0] < threshold for j in unique_indices):
unique_indices.append(i)
return [topic_keywords_list[i] for i in unique_indices]
def get_representative_summaries(df, summary_column, embeddings, cluster_labels, kmeans):
"""
Get the most representative summary for each cluster based on proximity to the cluster centroid.
"""
print("π Refining cluster labels using representative summaries...")
representatives = {}
for i in range(kmeans.n_clusters):
indices = [j for j, label in enumerate(cluster_labels) if label == i]
if not indices:
continue
cluster_embeddings = embeddings[indices]
centroid = kmeans.cluster_centers_[i]
distances = np.linalg.norm(cluster_embeddings - centroid, axis=1)
closest_idx = indices[np.argmin(distances)]
representatives[i] = df.iloc[closest_idx][summary_column]
return representatives
def cluster_and_label_articles(df, content_column="content", summary_column="summary", min_clusters=2, max_clusters=10, max_topics=3):
"""
Cluster articles using SentenceTransformer embeddings and label clusters using TF-IDF and Topic Modeling.
Display detected topics for each cluster with Primary focus and Related topics.
"""
if df.empty:
print("No articles to cluster.")
return None
# Step 1: Generate embeddings
embeddings = generate_embeddings(df, content_column)
# Step 2: Determine the optimum number of clusters
num_clusters = determine_optimum_clusters(embeddings, min_clusters, max_clusters)
# Step 3: Perform clustering
cluster_labels, kmeans = cluster_embeddings(embeddings, num_clusters)
df['cluster_label'] = cluster_labels
# Step 4: Extract TF-IDF matrix
print("π Extracting TF-IDF matrix for clusters...")
vectorizer = TfidfVectorizer(ngram_range=(1, 2), stop_words="english", max_features=5000)
tfidf_matrix = vectorizer.fit_transform(df[content_column].tolist())
feature_names = vectorizer.get_feature_names_out()
# Step 5: Process each cluster
print("π Processing clusters for TF-IDF and topic modeling...")
grouped = defaultdict(list)
for idx, label in enumerate(cluster_labels):
grouped[label].append(idx)
refined_labels = [""] * num_clusters # Initialize refined_labels with empty strings
detected_topics = {}
for cluster_id, indices in grouped.items():
cluster_texts = tfidf_matrix[indices]
# Extract TF-IDF keywords
avg_tfidf = cluster_texts.mean(axis=0).A1
top_indices = np.argsort(avg_tfidf)[::-1][:3]
tfidf_keywords = [feature_names[i] for i in top_indices]
# Generate a cluster label using the top TF-IDF keywords
cluster_label_tfidf = ", ".join(tfidf_keywords)
# Apply topic modeling
lda = LatentDirichletAllocation(n_components=min(max_topics, len(indices)), random_state=42)
lda.fit(cluster_texts)
topics = []
topic_weights = []
for topic_idx, topic in enumerate(lda.components_):
top_topic_indices = topic.argsort()[:-4:-1]
topics.append(", ".join([feature_names[i] for i in top_topic_indices]))
topic_weights.append(topic.sum()) # Sum of weights for ranking
# Rank topics by importance
ranked_topics = [x for _, x in sorted(zip(topic_weights, topics), reverse=True)]
# Generate Primary focus and Related topics
primary_focus = ranked_topics[0] if ranked_topics else "N/A"
related_topics = ranked_topics[1:] if len(ranked_topics) > 1 else []
# Store detected topics for user display
detected_topics[cluster_label_tfidf] = {
"primary_focus": primary_focus,
"related_topics": related_topics,
}
# Assign the TF-IDF keywords as the cluster label
refined_labels[cluster_id] = cluster_label_tfidf
# Assign refined labels to clusters
df['cluster_label'] = [refined_labels[label] for label in cluster_labels]
print("β
Clustering and labeling complete!")
return {
"dataframe": df,
"detected_topics": detected_topics,
"number_of_clusters": num_clusters,
} |