File size: 1,869 Bytes
bf8981a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
class AttrDict(dict):
    def __init__(self, *args, **kwargs):
        super(AttrDict, self).__init__(*args, **kwargs)
        self.__dict__ = self

    def override(self, attrs):
        if isinstance(attrs, dict):
            self.__dict__.update(**attrs)
        elif isinstance(attrs, (list, tuple, set)):
            for attr in attrs:
                self.override(attr)
        elif attrs is not None:
            raise NotImplementedError
        return self



params_chord = AttrDict(
    # Training params
    batch_size=16,
    max_epoch=10,
    learning_rate=5e-5,
    max_grad_norm=10,
    fp16=True,

    # unet
    in_channels=2,
    out_channels=2,
    channels=64,
    attention_levels=[2, 3],
    n_res_blocks=2,
    channel_multipliers=[1, 2, 4, 4],
    n_heads=4,
    tf_layers=1,
    d_cond=12,

    # ldm
    linear_start=0.00085,
    linear_end=0.0120,
    n_steps=1000,
    latent_scaling_factor=0.18215
)



params_chord_cond = AttrDict(
    # Training params
    batch_size=16,
    max_epoch=10,
    learning_rate=5e-5,
    max_grad_norm=10,
    fp16=True,

    # unet
    in_channels=4,
    out_channels=2,
    channels=64,
    attention_levels=[2, 3],
    n_res_blocks=2,
    channel_multipliers=[1, 2, 4, 4],
    n_heads=4,
    tf_layers=1,
    d_cond=2,

    # ldm
    linear_start=0.00085,
    linear_end=0.0120,
    n_steps=1000,
    latent_scaling_factor=0.18215
)


params_chord_lsh_cond = AttrDict(
    # Training params
    batch_size=16,
    max_epoch=10,
    learning_rate=5e-5,
    max_grad_norm=10,
    fp16=True,

    # unet
    in_channels=6,
    out_channels=2,
    channels=64,
    attention_levels=[2, 3],
    n_res_blocks=2,
    channel_multipliers=[1, 2, 4, 4],
    n_heads=4,
    tf_layers=1,
    d_cond=2,

    # ldm
    linear_start=0.00085,
    linear_end=0.0120,
    n_steps=1000,
    latent_scaling_factor=0.18215
)