File size: 22,445 Bytes
bf8981a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
from typing import Optional, List, Union
import numpy as np
import torch
from labml import monit
from .latent_diffusion import LatentDiffusion
def set_seed(seed):
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# Call the function to set the seed
# set_seed(42)
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
class DiffusionSampler:
"""
## Base class for sampling algorithms
"""
model: LatentDiffusion
def __init__(self, model: LatentDiffusion):
"""
:param model: is the model to predict noise $\epsilon_\text{cond}(x_t, c)$
"""
super().__init__()
# Set the model $\epsilon_\text{cond}(x_t, c)$
self.model = model
# Get number of steps the model was trained with $T$
self.n_steps = model.n_steps
class SDFSampler(DiffusionSampler):
"""
## DDPM Sampler
This extends the [`DiffusionSampler` base class](index.html).
DDPM samples images by repeatedly removing noise by sampling step by step from
$p_\theta(x_{t-1} | x_t)$,
\begin{align}
p_\theta(x_{t-1} | x_t) &= \mathcal{N}\big(x_{t-1}; \mu_\theta(x_t, t), \tilde\beta_t \mathbf{I} \big) \\
\mu_t(x_t, t) &= \frac{\sqrt{\bar\alpha_{t-1}}\beta_t}{1 - \bar\alpha_t}x_0
+ \frac{\sqrt{\alpha_t}(1 - \bar\alpha_{t-1})}{1-\bar\alpha_t}x_t \\
\tilde\beta_t &= \frac{1 - \bar\alpha_{t-1}}{1 - \bar\alpha_t} \beta_t \\
x_0 &= \frac{1}{\sqrt{\bar\alpha_t}} x_t - \Big(\sqrt{\frac{1}{\bar\alpha_t} - 1}\Big)\epsilon_\theta \\
\end{align}
"""
model: LatentDiffusion
def __init__(
self,
model: LatentDiffusion,
max_l,
h,
is_autocast=False,
is_show_image=False,
device=None,
debug_mode=False
):
"""
:param model: is the model to predict noise $\epsilon_\text{cond}(x_t, c)$
"""
super().__init__(model)
if device is None:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
else:
self.device = device
# selected time steps ($\tau$) $1, 2, \dots, T$
# self.time_steps = np.asarray(list(range(self.n_steps)), dtype=np.int32)
self.tau = torch.tensor([13, 53, 116, 193, 310, 443, 587, 730, 845, 999], device=self.device) # torch.tensor([999, 845, 730, 587, 443, 310, 193, 116, 53, 13])
# self.tau = torch.tensor(np.asarray(list(range(self.n_steps)), dtype=np.int32), device=self.device)
self.used_n_steps = len(self.tau)
self.is_show_image = is_show_image
self.autocast = torch.cuda.amp.autocast(enabled=is_autocast)
self.out_channel = self.model.eps_model.out_channels
self.max_l = max_l
self.h = h
self.debug_mode = debug_mode
self.guidance_scale = 7.5
self.guidance_rescale = 0.7
# now, we set the coefficients
with torch.no_grad():
# $\bar\alpha_t$
self.alpha_bar = self.model.alpha_bar
# $\beta_t$ schedule
beta = self.model.beta
# $\bar\alpha_{t-1}$
self.alpha_bar_prev = torch.cat([self.alpha_bar.new_tensor([1.]), self.alpha_bar[:-1]])
# $\sigma_t$ in DDIM
self.sigma_ddim = torch.sqrt((1-self.alpha_bar_prev)/(1-self.alpha_bar)*(1-self.alpha_bar/self.alpha_bar_prev)) # DDPM noise schedule
# $\frac{1}{\sqrt{\bar\alpha}}$
self.one_over_sqrt_alpha_bar = 1 / (self.alpha_bar ** 0.5)
# $\frac{\sqrt{1-\bar\alpha}}{\sqrt{\bar\alpha}}$
self.sqrt_1m_alpha_bar_over_sqrt_alpha_bar = (1 - self.alpha_bar)**0.5 / self.alpha_bar**0.5
# $\sqrt{\bar\alpha}$
self.sqrt_alpha_bar = self.alpha_bar ** 0.5
# $\sqrt{1 - \bar\alpha}$
self.sqrt_1m_alpha_bar = (1 - self.alpha_bar) ** 0.5
# # $\sqrt{\bar\alpha_{t-1}}$
# self.sqrt_alpha_bar_prev = self.alpha_bar_prev ** 0.5
# # $\sqrt{1-\bar\alpha_{t-1}-\sigma_t^2}$
# self.sqrt_1m_alpha_bar_prev_m_sigma2 = (1 - self.alpha_bar_prev - self.sigma_ddim ** 2) ** 0.5
#@property
# def d_cond(self):
#return self.model.eps_model.d_cond
def get_eps(
self,
x: torch.Tensor,
t: torch.Tensor,
background_cond: Optional[torch.Tensor],
uncond_scale: Optional[float],
):
"""
## Get $\epsilon(x_t, c)$
:param x: is $x_t$ of shape `[batch_size, channels, height, width]`
:param t: is $t$ of shape `[batch_size]`
:param background_cond: background condition
:param autoreg_cond: autoregressive condition
:param external_cond: external condition
:param c: is the conditional embeddings $c$ of shape `[batch_size, emb_size]`
:param uncond_scale: is the unconditional guidance scale $s$. This is used for
$\epsilon_\theta(x_t, c) = s\epsilon_\text{cond}(x_t, c) + (s - 1)\epsilon_\text{cond}(x_t, c_u)$
:param uncond_cond: is the conditional embedding for empty prompt $c_u$
"""
# When the scale $s = 1$
# $$\epsilon_\theta(x_t, c) = \epsilon_\text{cond}(x_t, c)$$
batch_size = x.size(0)
# if hasattr(self.model, 'style_enc'):
# if external_cond is not None:
# external_cond = self.model.external_cond_enc(external_cond)
# if uncond_scale is None or uncond_scale == 1:
# external_uncond = (-torch.ones_like(external_cond)).to(self.device)
# else:
# external_uncond = None
# # if random.random() < 0.2:
# # external_cond = (-torch.ones_like(external_cond)).to(self.device)
# else:
# external_cond = -torch.ones(batch_size, 4, self.d_cond, device=x.device, dtype=x.dtype)
# external_uncond = None
# cond = torch.cat([autoreg_cond, external_cond], 1)
# if external_uncond is None:
# uncond = None
# else:
# uncond = torch.cat([autoreg_cond, external_uncond], 1)
# else:
# cond = autoreg_cond
# uncond = None
if background_cond is not None:
x = torch.cat([x, background_cond], 1) if background_cond is not None else x
# if uncond is None:
# e_t = self.model(x, t, cond)
# else:
# e_t_cond = self.model(x, t, cond)
# e_t_uncond = self.model(x, t, uncond)
# e_t = e_t_uncond + uncond_scale * (e_t_cond - e_t_uncond)
e_t = self.model(x,t)
return e_t
@torch.no_grad()
def p_sample(
self,
x: torch.Tensor,
background_cond: Optional[torch.Tensor],
#autoreg_cond: Optional[torch.Tensor],
#external_cond: Optional[torch.Tensor],
t: torch.Tensor,
step: int,
repeat_noise: bool = False,
temperature: float = 1.,
uncond_scale: float = 1.,
same_noise_all_measure: bool = False,
X0EditFunc = None,
use_classifier_free_guidance = False,
use_lsh = False,
reduce_extra_notes=True,
rhythm_control="Yes",
):
print("p_sample")
"""
### Sample $x_{t-1}$ from $p_\theta(x_{t-1} | x_t)$
:param x: is $x_t$ of shape `[batch_size, channels, height, width]`
:param background_cond: background condition
:param autoreg_cond: autoregressive condition
:param external_cond: external condition
:param t: is $t$ of shape `[batch_size]`
:param step: is the step $t$ as an integer
:param repeat_noise: specified whether the noise should be same for all samples in the batch
:param temperature: is the noise temperature (random noise gets multiplied by this)
:param uncond_scale: is the unconditional guidance scale $s$. This is used for
$\epsilon_\theta(x_t, c) = s\epsilon_\text{cond}(x_t, c) + (s - 1)\epsilon_\text{cond}(x_t, c_u)$
"""
# Get current tau_i and tau_{i-1}
tau_i = self.tau[t]
step_tau_i = self.tau[step]
# Get $\epsilon_\theta$
with self.autocast:
if use_classifier_free_guidance:
if use_lsh:
assert background_cond.shape[1] == 6 # chd_onset, chd_sustain, null_chd_onset, null_chd_sustain, lsh_onset, lsh_sustain
null_lsh = -torch.ones_like(background_cond[:,4:,:,:])
null_background_cond = torch.cat([background_cond[:,2:4,:,:], null_lsh], axis=1)
real_background_cond = torch.cat([background_cond[:,:2,:,:], background_cond[:,4:,:,:]], axis=1)
e_tau_i_null = self.get_eps(x, tau_i, null_background_cond, uncond_scale=uncond_scale)
e_tau_i_real = self.get_eps(x, tau_i, real_background_cond, uncond_scale=uncond_scale)
e_tau_i = e_tau_i_null + self.guidance_scale * (e_tau_i_real-e_tau_i_null)
if self.guidance_rescale > 0:
e_tau_i = rescale_noise_cfg(e_tau_i, e_tau_i_real, guidance_rescale=self.guidance_rescale)
else:
assert background_cond.shape[1] == 4 # chd_onset, chd_sustain, null_chd_onset, null_chd_sustain
null_background_cond = background_cond[:,2:,:,:]
real_background_cond = background_cond[:,:2,:,:]
e_tau_i_null = self.get_eps(x, tau_i, null_background_cond, uncond_scale=uncond_scale)
e_tau_i_real = self.get_eps(x, tau_i, real_background_cond, uncond_scale=uncond_scale)
e_tau_i = e_tau_i_null + self.guidance_scale * (e_tau_i_real-e_tau_i_null)
if self.guidance_rescale > 0:
e_tau_i = rescale_noise_cfg(e_tau_i, e_tau_i_real, guidance_rescale=self.guidance_rescale)
else:
if use_lsh:
assert background_cond.shape[1] == 4 # chd_onset, chd_sustain, lsh_onset, lsh_sustain
e_tau_i = self.get_eps(x, tau_i, background_cond, uncond_scale=uncond_scale)
else:
assert background_cond.shape[1] == 2 # chd_onset, chd_sustain
e_tau_i = self.get_eps(x, tau_i, background_cond, uncond_scale=uncond_scale)
# Get batch size
bs = x.shape[0]
# $\frac{1}{\sqrt{\bar\alpha}}$
one_over_sqrt_alpha_bar = x.new_full(
(bs, 1, 1, 1), self.one_over_sqrt_alpha_bar[step_tau_i]
)
# $\frac{\sqrt{1-\bar\alpha}}{\sqrt{\bar\alpha}}$
sqrt_1m_alpha_bar_over_sqrt_alpha_bar = x.new_full(
(bs, 1, 1, 1), self.sqrt_1m_alpha_bar_over_sqrt_alpha_bar[step_tau_i]
)
# $\sigma_t$ in DDIM
sigma_ddim = x.new_full(
(bs, 1, 1, 1), self.sigma_ddim[step_tau_i]
)
# Calculate $x_0$ with current $\epsilon_\theta$
#
# predicted x_0 in DDIM
predicted_x0 = one_over_sqrt_alpha_bar * x[:, 0: e_tau_i.size(1)] - sqrt_1m_alpha_bar_over_sqrt_alpha_bar * e_tau_i
# edit predicted x_0
if X0EditFunc is not None:
predicted_x0 = X0EditFunc(predicted_x0, background_cond, reduce_extra_notes=reduce_extra_notes, rhythm_control=rhythm_control)
e_tau_i = (one_over_sqrt_alpha_bar * x[:, 0: e_tau_i.size(1)] - predicted_x0) / sqrt_1m_alpha_bar_over_sqrt_alpha_bar
# Do not add noise when $t = 1$ (final step sampling process).
# Note that `step` is `0` when $t = 1$)
if step == 0:
noise = 0
# If same noise is used for all samples in the batch
elif repeat_noise:
if same_noise_all_measure:
noise = torch.randn((1, predicted_x0.shape[1], 16, predicted_x0.shape[3]), device=self.device).repeat(1,1,int(predicted_x0.shape[2]/16),1)
else:
noise = torch.randn((1, *predicted_x0.shape[1:]), device=self.device)
# Different noise for each sample
else:
if same_noise_all_measure:
noise = torch.randn(predicted_x0.shape[0], predicted_x0.shape[1], 16, predicted_x0.shape[3], device=self.device).repeat(1,1,int(predicted_x0.shape[2]/16),1)
else:
noise = torch.randn(predicted_x0.shape, device=self.device)
# Multiply noise by the temperature
noise = noise * temperature
if step > 0:
step_tau_i_m_1 = self.tau[step-1]
# $\sqrt{\bar\alpha_{\tau_i-1}}$
sqrt_alpha_bar_prev = x.new_full(
(bs, 1, 1, 1), self.sqrt_alpha_bar[step_tau_i_m_1]
)
# $\sqrt{1-\bar\alpha_{\tau_i-1}-\sigma_\tau^2}$
sqrt_1m_alpha_bar_prev_m_sigma2 = x.new_full(
(bs, 1, 1, 1), (1 - self.alpha_bar[step_tau_i_m_1] - self.sigma_ddim[step_tau_i] ** 2) ** 0.5
)
direction_to_xt = sqrt_1m_alpha_bar_prev_m_sigma2 * e_tau_i
x_prev = sqrt_alpha_bar_prev * predicted_x0 + direction_to_xt + sigma_ddim * noise
else:
x_prev = predicted_x0 + sigma_ddim * noise
# Sample from,
#
# $$p_\theta(x_{t-1} | x_t) = \mathcal{N}\big(x_{t-1}; \mu_\theta(x_t, t), \tilde\beta_t \mathbf{I} \big)$$
#
return x_prev, predicted_x0, e_tau_i
@torch.no_grad()
def q_sample(
self, x0: torch.Tensor, index: int, noise: Optional[torch.Tensor] = None
):
"""
### Sample from $q(x_t|x_0)$
$$q(x_t|x_0) = \mathcal{N} \Big(x_t; \sqrt{\bar\alpha_t} x_0, (1-\bar\alpha_t) \mathbf{I} \Big)$$
:param x0: is $x_0$ of shape `[batch_size, channels, height, width]`
:param index: is the time step $t$ index
:param noise: is the noise, $\epsilon$
"""
# Random noise, if noise is not specified
if noise is None:
noise = torch.randn_like(x0, device=self.device)
# Sample from $\mathcal{N} \Big(x_t; \sqrt{\bar\alpha_t} x_0, (1-\bar\alpha_t) \mathbf{I} \Big)$
return self.sqrt_alpha_bar[index] * x0 + self.sqrt_1m_alpha_bar[index] * noise
@torch.no_grad()
def sample(
self,
shape: List[int],
background_cond: Optional[torch.Tensor] = None,
#autoreg_cond: Optional[torch.Tensor] = None,
#external_cond: Optional[torch.Tensor] = None,
repeat_noise: bool = False,
temperature: float = 1.,
uncond_scale: float = 1.,
x_last: Optional[torch.Tensor] = None,
t_start: int = 0,
same_noise_all_measure: bool = False,
X0EditFunc = None,
use_classifier_free_guidance = False,
use_lsh = False,
reduce_extra_notes=True,
rhythm_control="Yes",
):
"""
### Sampling Loop
:param shape: is the shape of the generated images in the
form `[batch_size, channels, height, width]`
:param background_cond: background condition
:param autoreg_cond: autoregressive condition
:param external_cond: external condition
:param repeat_noise: specified whether the noise should be same for all samples in the batch
:param temperature: is the noise temperature (random noise gets multiplied by this)
:param x_last: is $x_T$. If not provided random noise will be used.
:param uncond_scale: is the unconditional guidance scale $s$. This is used for
$\epsilon_\theta(x_t, c) = s\epsilon_\text{cond}(x_t, c) + (s - 1)\epsilon_\text{cond}(x_t, c_u)$
:param t_start: t_start
"""
# Get device and batch size
bs = shape[0]
######
print(shape)
######
# Get $x_T$
if same_noise_all_measure:
x = x_last if x_last is not None else torch.randn(shape[0],shape[1],16,shape[3], device=self.device).repeat(1,1,int(shape[2]/16),1)
else:
x = x_last if x_last is not None else torch.randn(shape, device=self.device)
# Time steps to sample at $T - t', T - t' - 1, \dots, 1$
time_steps = np.flip(np.asarray(list(range(self.used_n_steps)), dtype=np.int32))[t_start:]
# Sampling loop
for step in monit.iterate('Sample', time_steps):
# Time step $t$
ts = x.new_full((bs, ), step, dtype=torch.long)
x, pred_x0, e_t = self.p_sample(
x,
background_cond,
#autoreg_cond,
#external_cond,
ts,
step,
repeat_noise=repeat_noise,
temperature=temperature,
uncond_scale=uncond_scale,
same_noise_all_measure=same_noise_all_measure,
X0EditFunc = X0EditFunc,
use_classifier_free_guidance = use_classifier_free_guidance,
use_lsh=use_lsh,
reduce_extra_notes=reduce_extra_notes,
rhythm_control=rhythm_control
)
s1 = step + 1
# if self.is_show_image:
# if s1 % 100 == 0 or (s1 <= 100 and s1 % 25 == 0):
# show_image(x, f"exp/img/x{s1}.png")
# Return $x_0$
# if self.is_show_image:
# show_image(x, f"exp/img/x0.png")
return x
@torch.no_grad()
def paint(
self,
x: Optional[torch.Tensor] = None,
background_cond: Optional[torch.Tensor] = None,
#autoreg_cond: Optional[torch.Tensor] = None,
#external_cond: Optional[torch.Tensor] = None,
t_start: int = 0,
orig: Optional[torch.Tensor] = None,
mask: Optional[torch.Tensor] = None,
orig_noise: Optional[torch.Tensor] = None,
uncond_scale: float = 1.,
same_noise_all_measure: bool = False,
X0EditFunc = None,
use_classifier_free_guidance = False,
use_lsh = False,
):
"""
### Painting Loop
:param x: is $x_{S'}$ of shape `[batch_size, channels, height, width]`
:param background_cond: background condition
:param autoreg_cond: autoregressive condition
:param external_cond: external condition
:param t_start: is the sampling step to start from, $S'$
:param orig: is the original image in latent page which we are in paining.
If this is not provided, it'll be an image to image transformation.
:param mask: is the mask to keep the original image.
:param orig_noise: is fixed noise to be added to the original image.
:param uncond_scale: is the unconditional guidance scale $s$. This is used for
$\epsilon_\theta(x_t, c) = s\epsilon_\text{cond}(x_t, c) + (s - 1)\epsilon_\text{cond}(x_t, c_u)$
"""
# Get batch size
bs = orig.size(0)
if x is None:
x = torch.randn(orig.shape, device=self.device)
# Time steps to sample at $\tau_{S`}, \tau_{S' - 1}, \dots, \tau_1$
# time_steps = np.flip(self.time_steps[: t_start])
time_steps = np.flip(np.asarray(list(range(self.used_n_steps)), dtype=np.int32))[t_start:]
for i, step in monit.enum('Paint', time_steps):
# Index $i$ in the list $[\tau_1, \tau_2, \dots, \tau_S]$
# index = len(time_steps) - i - 1
# Time step $\tau_i$
ts = x.new_full((bs, ), step, dtype=torch.long)
# Sample $x_{\tau_{i-1}}$
x, _, _ = self.p_sample(
x,
background_cond,
#autoreg_cond,
#external_cond,
t=ts,
step=step,
uncond_scale=uncond_scale,
same_noise_all_measure=same_noise_all_measure,
X0EditFunc = X0EditFunc,
use_classifier_free_guidance = use_classifier_free_guidance,
use_lsh=use_lsh,
)
# Replace the masked area with original image
if orig is not None:
assert mask is not None
# Get the $q_{\sigma,\tau}(x_{\tau_i}|x_0)$ for original image in latent space
orig_t = self.q_sample(orig, self.tau[step], noise=orig_noise)
# Replace the masked area
x = orig_t * mask + x * (1 - mask)
s1 = step + 1
# if self.is_show_image:
# if s1 % 100 == 0 or (s1 <= 100 and s1 % 25 == 0):
# show_image(x, f"exp/img/x{s1}.png")
# if self.is_show_image:
# show_image(x, f"exp/img/x0.png")
return x
def generate(self, background_cond=None, batch_size=1, uncond_scale=None,
same_noise_all_measure=False, X0EditFunc=None,
use_classifier_free_guidance=False, use_lsh=False, reduce_extra_notes=True, rhythm_control="Yes"):
shape = [batch_size, self.out_channel, self.max_l, self.h]
if self.debug_mode:
return torch.randn(shape, dtype=torch.float)
return self.sample(shape, background_cond, uncond_scale=uncond_scale, same_noise_all_measure=same_noise_all_measure,
X0EditFunc=X0EditFunc, use_classifier_free_guidance=use_classifier_free_guidance, use_lsh=use_lsh,
reduce_extra_notes=reduce_extra_notes, rhythm_control=rhythm_control
)
|