File size: 9,781 Bytes
02685a6
7787e71
33934d8
 
 
 
2a29046
02685a6
33934d8
 
 
 
02685a6
33934d8
 
02685a6
33934d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
014db32
 
948e9f7
014db32
 
 
 
33934d8
 
 
 
2a29046
33934d8
2a29046
 
 
49680b6
2a29046
33934d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49680b6
33934d8
 
 
 
0e0a3bd
33934d8
0ff530e
33934d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02685a6
33934d8
 
 
 
 
 
 
 
 
 
 
 
 
02685a6
33934d8
 
 
 
 
 
 
00ac3b0
33934d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06031c7
33934d8
 
 
 
014db32
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import torch
import spaces
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor
from diffusers.utils import load_image
import os,sys
import gradio as gr
from huggingface_hub import hf_hub_download

from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img_face import StableDiffusionXLControlNetImg2ImgPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.controlnet import ControlNetModel

from diffusers import  AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel

from diffusers import EulerDiscreteScheduler
from PIL import Image
import numpy as np
import cv2
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image

example_path = os.path.join(os.path.dirname(__file__), 'examples')


class FaceInfoGenerator():
    def __init__(self, root_dir = "./"):
        self.app = FaceAnalysis(name = 'antelopev2', root = root_dir, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
        self.app.prepare(ctx_id = 0, det_size = (640, 640))

    def get_faceinfo_one_img(self, face_image):
        face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))

        if len(face_info) == 0:
            face_info = None
        else:
            face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1]  # only use the maximum face
        return face_info
    
def face_bbox_to_square(bbox):
    ## l, t, r, b to square l, t, r, b
    l,t,r,b = bbox
    cent_x = (l + r) / 2
    cent_y = (t + b) / 2
    w, h = r - l, b - t
    r = max(w, h) / 2

    l0 = cent_x - r
    r0 = cent_x + r
    t0 = cent_y - r
    b0 = cent_y + r

    return [l0, t0, r0, b0]


text_encoder = ChatGLMModel.from_pretrained("Kwai-Kolors/Kolors",subfolder="text_encoder").to(dtype=torch.bfloat16)
tokenizer = ChatGLMTokenizer.from_pretrained("Kwai-Kolors/Kolors",subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained("Kwai-Kolors/Kolors",subfolder="vae", revision=None).to(dtype=torch.bfloat16)
scheduler = EulerDiscreteScheduler.from_pretrained("Kwai-Kolors/Kolors",subfolder="scheduler")
unet = UNet2DConditionModel.from_pretrained("Kwai-Kolors/Kolors",subfolder="unet", revision=None).to(dtype=torch.bfloat16)

control_path = "haowu11/Kolors-Controlnet-Pose-Tryon"
controlnet = ControlNetModel.from_pretrained( control_path , revision=None).to(dtype=torch.bfloat16)

face_info_generator = FaceInfoGenerator(root_dir = "./")

clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained("Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus",subfolder="clip-vit-large-patch14-336", ignore_mismatched_sizes=True)
clip_image_processor = CLIPImageProcessor(size = 336, crop_size = 336)

hf_hub_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus", filename="ipa-faceid-plus.bin",cache_dir='./')

snapshotname = os.listdir('./models--Kwai-Kolors--Kolors-IP-Adapter-FaceID-Plus/snapshots')[0]

pipe = StableDiffusionXLControlNetImg2ImgPipeline(
        vae=vae,
        controlnet = controlnet,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        unet=unet,
        scheduler=scheduler,
        # image_encoder=image_encoder,
        # feature_extractor=clip_image_processor,
        force_zeros_for_empty_prompt=False,
        face_clip_encoder=clip_image_encoder,
        face_clip_processor=clip_image_processor,
        )
if hasattr(pipe.unet, 'encoder_hid_proj'):
    pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj
ip_scale = 0.5
pipe.load_ip_adapter_faceid_plus(f'models--Kwai-Kolors--Kolors-IP-Adapter-FaceID-Plus/snapshots/{snapshotname}/ipa-faceid-plus.bin', device = 'cuda')
pipe.set_face_fidelity_scale(ip_scale)
pipe = pipe.to("cuda")
pipe.enable_model_cpu_offload()

@spaces.GPU
def infer(face_img,pose_img, garm_img, prompt,negative_prompt, n_samples, n_steps, seed):
    pipe.face_clip_encoder.to('cuda')
    face_img = Image.open(face_img)
    pose_img = Image.open(pose_img)
    garm_img = Image.open(garm_img)
    face_img = face_img.resize((336, 336))
    pose_img = pose_img.resize((768, 1024))
    garm_img = garm_img.resize((768, 1024))
    
    background = Image.new("RGB", (768, 768), (255, 255, 255))
    #将face_img粘贴到background中心
    background.paste(face_img, (int((768 - 336) / 2), int((768 - 336) / 2)))

    face_info = face_info_generator.get_faceinfo_one_img(background)

    face_embeds = torch.from_numpy(np.array([face_info["embedding"]]))
    face_embeds = face_embeds.to('cuda', dtype = torch.bfloat16)    
        
    controlnet_conditioning_scale = 1.0
    control_guidance_end = 0.9
    #strength 越是小,则生成图片越是依赖原始图片。
    strength = 1.0
        
    im1 = np.array(pose_img)
    im2 = np.array(garm_img)

    condi_img = Image.fromarray( np.concatenate( (im1, im2), axis=1 ) )
    
    generator = torch.Generator(device="cpu").manual_seed(seed)
    image = pipe(
        prompt= prompt ,
        # image = init_image,
        controlnet_conditioning_scale = controlnet_conditioning_scale,
        control_guidance_end = control_guidance_end, 
        # ip_adapter_image=[ ip_adapter_img ],
        face_crop_image = face_img,
        face_insightface_embeds = face_embeds,
        strength= strength , 
        control_image = condi_img,
        negative_prompt= negative_prompt , 
        num_inference_steps=n_steps , 
        guidance_scale= 5.0,
        num_images_per_prompt=n_samples,
        generator=generator,
    ).images
    return image


block = gr.Blocks().queue()
with block:
    with gr.Row():
        gr.Markdown("# KolorsControlnetTryon Demo")
    with gr.Row():
        with gr.Column():
            pose_img = gr.Image(label="Pose", sources='upload', type="filepath", height=768, value=os.path.join(example_path, 'pose/1.jpg'))
            example = gr.Examples(
                inputs=pose_img,
                examples_per_page=10,
                examples=[
                    os.path.join(example_path, 'pose/1.jpg'),
                    os.path.join(example_path, 'pose/2.jpg'),
                    os.path.join(example_path, 'pose/3.jpg'),
                    os.path.join(example_path, 'pose/4.jpg'),
                    os.path.join(example_path, 'pose/5.jpg'),
                    os.path.join(example_path, 'pose/6.jpg'),
                    os.path.join(example_path, 'pose/7.jpg'),
                    os.path.join(example_path, 'pose/8.jpg'),
                    os.path.join(example_path, 'pose/9.jpg'),
                    os.path.join(example_path, 'pose/10.jpg'),
                ])
        with gr.Column():
            garm_img = gr.Image(label="Garment", sources='upload', type="filepath", height=768, value=os.path.join(example_path, 'garment/1.jpg'),)
            example = gr.Examples(
                inputs=garm_img,
                examples_per_page=10,
                examples=[
                    os.path.join(example_path, 'garment/1.jpg'),
                    os.path.join(example_path, 'garment/2.jpg'),
                    os.path.join(example_path, 'garment/3.jpg'),
                    os.path.join(example_path, 'garment/4.jpg'),
                    os.path.join(example_path, 'garment/5.jpg'),
                    os.path.join(example_path, 'garment/6.jpg'),
                    os.path.join(example_path, 'garment/7.jpg'),
                    os.path.join(example_path, 'garment/8.jpg'),
                    os.path.join(example_path, 'garment/9.jpg'),
                    os.path.join(example_path, 'garment/10.jpg'),
                ])
    with gr.Row():
        with gr.Column():
            face_img = gr.Image(label="Face", sources='upload', type="filepath", height=336, value=os.path.join(example_path, 'face/1.png'),)
            example = gr.Examples(
                inputs=face_img,
                examples_per_page=10,
                examples=[
                    os.path.join(example_path, 'face/1.png'),
                    os.path.join(example_path, 'face/2.png'),
                    os.path.join(example_path, 'face/3.png'),
                    os.path.join(example_path, 'face/4.png'),
                    os.path.join(example_path, 'face/5.png'),
                    os.path.join(example_path, 'face/6.png'),
                    os.path.join(example_path, 'face/7.png'),
                    os.path.join(example_path, 'face/8.png'),
                    os.path.join(example_path, 'face/9.png'),
                    os.path.join(example_path, 'face/10.png'),
                ])
        with gr.Column():
            result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1)   
    with gr.Column():
        prompt = gr.Textbox(value="这张图片上的模特穿着一件黑色的长袖T恤,T恤上印着彩色的字母'OBEY'。她还穿着一条牛仔裤。", show_label=False, elem_id="prompt")
        negative_prompt = gr.Textbox(value="nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯", show_label=False, elem_id="negative_prompt")
        n_samples = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1)
        n_steps = gr.Slider(label="Steps", minimum=20, maximum=50, value=20, step=1)
        seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
        run_button = gr.Button(value="Run")
    ips = [face_img,pose_img, garm_img, prompt,negative_prompt, n_samples, n_steps, seed]
    run_button.click(fn=infer, inputs=ips, outputs=[result_gallery])
if __name__ == "__main__":
    block.launch(server_name='0.0.0.0')