File size: 5,764 Bytes
708dec4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch

from .bounding_box import BoxList

from maskrcnn_benchmark.layers import nms as _box_nms
from maskrcnn_benchmark.layers import ml_nms as _box_ml_nms


def boxlist_nms(boxlist, nms_thresh, max_proposals=-1, score_field="score"):
    """

    Performs non-maximum suppression on a boxlist, with scores specified

    in a boxlist field via score_field.



    Arguments:

        boxlist(BoxList)

        nms_thresh (float)

        max_proposals (int): if > 0, then only the top max_proposals are kept

            after non-maxium suppression

        score_field (str)

    """
    if nms_thresh <= 0:
        return boxlist
    mode = boxlist.mode
    boxlist = boxlist.convert("xyxy")
    boxes = boxlist.bbox
    score = boxlist.get_field(score_field)
    keep = _box_nms(boxes, score, nms_thresh)
    if max_proposals > 0:
        keep = keep[: max_proposals]
    boxlist = boxlist[keep]
    return boxlist.convert(mode)


def boxlist_ml_nms(boxlist, nms_thresh, max_proposals=-1,

                   score_field="scores", label_field="labels"):
    """

    Performs non-maximum suppression on a boxlist, with scores specified

    in a boxlist field via score_field.



    Arguments:

        boxlist(BoxList)

        nms_thresh (float)

        max_proposals (int): if > 0, then only the top max_proposals are kept

            after non-maximum suppression

        score_field (str)

    """
    if nms_thresh <= 0:
        return boxlist
    mode = boxlist.mode
    boxlist = boxlist.convert("xyxy")
    boxes = boxlist.bbox
    scores = boxlist.get_field(score_field)
    labels = boxlist.get_field(label_field)

    if boxes.device==torch.device("cpu"):
        keep = []
        unique_labels = torch.unique(labels)
        print(unique_labels)
        for j in unique_labels:
            inds = (labels == j).nonzero().view(-1)

            scores_j = scores[inds]
            boxes_j = boxes[inds, :].view(-1, 4)
            keep_j = _box_nms(boxes_j, scores_j, nms_thresh)

            keep += keep_j
    else:
        keep = _box_ml_nms(boxes, scores, labels.float(), nms_thresh)
        
    if max_proposals > 0:
        keep = keep[: max_proposals]
    boxlist = boxlist[keep]

    return boxlist.convert(mode)


def remove_small_boxes(boxlist, min_size):
    """

    Only keep boxes with both sides >= min_size



    Arguments:

        boxlist (Boxlist)

        min_size (int)

    """
    # WORK AROUND: work around unbind using split + squeeze.
    xywh_boxes = boxlist.convert("xywh").bbox
    _, _, ws, hs = xywh_boxes.split(1, dim=1)
    ws = ws.squeeze(1)
    hs = hs.squeeze(1)
    keep = ((ws >= min_size) & (hs >= min_size)).nonzero().squeeze(1)
    return boxlist[keep]


# implementation from https://github.com/kuangliu/torchcv/blob/master/torchcv/utils/box.py
# with slight modifications
def boxlist_iou(boxlist1, boxlist2):
    """Compute the intersection over union of two set of boxes.

    The box order must be (xmin, ymin, xmax, ymax).



    Arguments:

      box1: (BoxList) bounding boxes, sized [N,4].

      box2: (BoxList) bounding boxes, sized [M,4].



    Returns:

      (tensor) iou, sized [N,M].



    Reference:

      https://github.com/chainer/chainercv/blob/master/chainercv/utils/bbox/bbox_iou.py

    """
    if boxlist1.size != boxlist2.size:
        raise RuntimeError(
                "boxlists should have same image size, got {}, {}".format(boxlist1, boxlist2))

    N = len(boxlist1)
    M = len(boxlist2)

    area1 = boxlist1.area()
    area2 = boxlist2.area()

    box1, box2 = boxlist1.bbox, boxlist2.bbox

    lt = torch.max(box1[:, None, :2], box2[:, :2])  # [N,M,2]
    rb = torch.min(box1[:, None, 2:], box2[:, 2:])  # [N,M,2]

    TO_REMOVE = 1

    wh = (rb - lt + TO_REMOVE).clamp(min=0)  # [N,M,2]
    inter = wh[:, :, 0] * wh[:, :, 1]  # [N,M]

    iou = inter / (area1[:, None] + area2 - inter)
    return iou


# TODO redundant, remove
def _cat(tensors, dim=0):
    """

    Efficient version of torch.cat that avoids a copy if there is only a single element in a list

    """
    assert isinstance(tensors, (list, tuple))
    if len(tensors) == 1:
        return tensors[0]
    if isinstance(tensors[0], torch.Tensor):
        return torch.cat(tensors, dim)
    else:
        return cat_boxlist(tensors)

def cat_boxlist(bboxes):
    """

    Concatenates a list of BoxList (having the same image size) into a

    single BoxList



    Arguments:

        bboxes (list[BoxList])

    """
    assert isinstance(bboxes, (list, tuple))
    assert all(isinstance(bbox, BoxList) for bbox in bboxes)

    size = bboxes[0].size
    assert all(bbox.size == size for bbox in bboxes)

    mode = bboxes[0].mode
    assert all(bbox.mode == mode for bbox in bboxes)

    fields = set(bboxes[0].fields())
    assert all(set(bbox.fields()) == fields for bbox in bboxes)

    cat_boxes = BoxList(_cat([bbox.bbox for bbox in bboxes], dim=0), size, mode)

    for field in fields:
        data = _cat([bbox.get_field(field) for bbox in bboxes], dim=0)
        cat_boxes.add_field(field, data)

    return cat_boxes


def getUnionBBox(aBB, bBB, margin = 10):
    assert aBB.size==bBB.size
    assert aBB.mode==bBB.mode
    ih, iw = aBB.size
    union_boxes = torch.cat([(torch.min(aBB.bbox[:,[0,1]], bBB.bbox[:,[0,1]]) - margin).clamp(min=0), \
        (torch.max(aBB.bbox[:,[2]], bBB.bbox[:,[2]]) + margin).clamp(max=iw), \
        (torch.max(aBB.bbox[:,[3]], bBB.bbox[:,[3]]) + margin).clamp(max=ih)], dim=1)
    return BoxList(union_boxes, aBB.size, mode=aBB.mode)