Spaces:
Build error
Build error
File size: 12,331 Bytes
708dec4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
# transpose
FLIP_LEFT_RIGHT = 0
FLIP_TOP_BOTTOM = 1
class BoxList(object):
"""
This class represents a set of bounding boxes.
The bounding boxes are represented as a Nx4 Tensor.
In order to uniquely determine the bounding boxes with respect
to an image, we also store the corresponding image dimensions.
They can contain extra information that is specific to each bounding box, such as
labels.
"""
def __init__(self, bbox, image_size, mode="xyxy"):
device = bbox.device if isinstance(bbox, torch.Tensor) else torch.device("cpu")
# only do as_tensor if isn't a "no-op", because it hurts JIT tracing
if (not isinstance(bbox, torch.Tensor)
or bbox.dtype != torch.float32 or bbox.device != device):
bbox = torch.as_tensor(bbox, dtype=torch.float32, device=device)
if bbox.ndimension() != 2:
raise ValueError(
"bbox should have 2 dimensions, got {}".format(bbox.ndimension())
)
if bbox.size(-1) != 4:
raise ValueError(
"last dimenion of bbox should have a "
"size of 4, got {}".format(bbox.size(-1))
)
if mode not in ("xyxy", "xywh"):
raise ValueError("mode should be 'xyxy' or 'xywh'")
self.bbox = bbox
self.size = image_size # (image_width, image_height)
self.mode = mode
self.extra_fields = {}
# note: _jit_wrap/_jit_unwrap only work if the keys and the sizes don't change in between
def _jit_unwrap(self):
return (self.bbox,) + tuple(f for f in (self.get_field(field)
for field in sorted(self.fields()))
if isinstance(f, torch.Tensor))
def _jit_wrap(self, input_stream):
self.bbox = input_stream[0]
num_consumed = 1
for f in sorted(self.fields()):
if isinstance(self.extra_fields[f], torch.Tensor):
self.extra_fields[f] = input_stream[num_consumed]
num_consumed += 1
return self, input_stream[num_consumed:]
def add_field(self, field, field_data):
self.extra_fields[field] = field_data
def get_field(self, field):
return self.extra_fields[field]
def has_field(self, field):
return field in self.extra_fields
def fields(self):
return list(self.extra_fields.keys())
def _copy_extra_fields(self, bbox):
for k, v in bbox.extra_fields.items():
self.extra_fields[k] = v
def convert(self, mode):
if mode not in ("xyxy", "xywh"):
raise ValueError("mode should be 'xyxy' or 'xywh'")
if mode == self.mode:
return self
# we only have two modes, so don't need to check
# self.mode
xmin, ymin, xmax, ymax = self._split_into_xyxy()
if mode == "xyxy":
bbox = torch.cat((xmin, ymin, xmax, ymax), dim=-1)
bbox = BoxList(bbox, self.size, mode=mode)
else:
TO_REMOVE = 1
# NOTE: explicitly specify dim to avoid tracing error in GPU
bbox = torch.cat(
(xmin, ymin, xmax - xmin + TO_REMOVE, ymax - ymin + TO_REMOVE), dim=1
)
bbox = BoxList(bbox, self.size, mode=mode)
bbox._copy_extra_fields(self)
return bbox
def _split_into_xyxy(self):
if self.mode == "xyxy":
xmin, ymin, xmax, ymax = self.bbox.split(1, dim=-1)
return xmin, ymin, xmax, ymax
elif self.mode == "xywh":
TO_REMOVE = 1
xmin, ymin, w, h = self.bbox.split(1, dim=-1)
return (
xmin,
ymin,
xmin + (w - TO_REMOVE).clamp(min=0),
ymin + (h - TO_REMOVE).clamp(min=0),
)
else:
raise RuntimeError("Should not be here")
def resize(self, size, *args, **kwargs):
"""
Returns a resized copy of this bounding box
:param size: The requested size in pixels, as a 2-tuple:
(width, height).
"""
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(size, self.size))
if ratios[0] == ratios[1]:
ratio = ratios[0]
scaled_box = self.bbox * ratio
bbox = BoxList(scaled_box, size, mode=self.mode)
# bbox._copy_extra_fields(self)
for k, v in self.extra_fields.items():
if not isinstance(v, torch.Tensor):
v = v.resize(size, *args, **kwargs)
bbox.add_field(k, v)
return bbox
ratio_width, ratio_height = ratios
xmin, ymin, xmax, ymax = self._split_into_xyxy()
scaled_xmin = xmin * ratio_width
scaled_xmax = xmax * ratio_width
scaled_ymin = ymin * ratio_height
scaled_ymax = ymax * ratio_height
scaled_box = torch.cat(
(scaled_xmin, scaled_ymin, scaled_xmax, scaled_ymax), dim=-1
)
bbox = BoxList(scaled_box, size, mode="xyxy")
# bbox._copy_extra_fields(self)
for k, v in self.extra_fields.items():
if not isinstance(v, torch.Tensor):
v = v.resize(size, *args, **kwargs)
bbox.add_field(k, v)
return bbox.convert(self.mode)
def transpose(self, method):
"""
Transpose bounding box (flip or rotate in 90 degree steps)
:param method: One of :py:attr:`PIL.Image.FLIP_LEFT_RIGHT`,
:py:attr:`PIL.Image.FLIP_TOP_BOTTOM`, :py:attr:`PIL.Image.ROTATE_90`,
:py:attr:`PIL.Image.ROTATE_180`, :py:attr:`PIL.Image.ROTATE_270`,
:py:attr:`PIL.Image.TRANSPOSE` or :py:attr:`PIL.Image.TRANSVERSE`.
"""
if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM):
raise NotImplementedError(
"Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented"
)
image_width, image_height = self.size
xmin, ymin, xmax, ymax = self._split_into_xyxy()
if method == FLIP_LEFT_RIGHT:
TO_REMOVE = 1
transposed_xmin = image_width - xmax - TO_REMOVE
transposed_xmax = image_width - xmin - TO_REMOVE
transposed_ymin = ymin
transposed_ymax = ymax
elif method == FLIP_TOP_BOTTOM:
transposed_xmin = xmin
transposed_xmax = xmax
transposed_ymin = image_height - ymax
transposed_ymax = image_height - ymin
transposed_boxes = torch.cat(
(transposed_xmin, transposed_ymin, transposed_xmax, transposed_ymax), dim=-1
)
bbox = BoxList(transposed_boxes, self.size, mode="xyxy")
# bbox._copy_extra_fields(self)
for k, v in self.extra_fields.items():
if not isinstance(v, torch.Tensor):
v = v.transpose(method)
bbox.add_field(k, v)
return bbox.convert(self.mode)
def crop(self, box):
"""
Cropss a rectangular region from this bounding box. The box is a
4-tuple defining the left, upper, right, and lower pixel
coordinate.
"""
xmin, ymin, xmax, ymax = self._split_into_xyxy()
w, h = box[2] - box[0], box[3] - box[1]
cropped_xmin = (xmin - box[0]).clamp(min=0, max=w)
cropped_ymin = (ymin - box[1]).clamp(min=0, max=h)
cropped_xmax = (xmax - box[0]).clamp(min=0, max=w)
cropped_ymax = (ymax - box[1]).clamp(min=0, max=h)
# TODO should I filter empty boxes here?
cropped_box = torch.cat(
(cropped_xmin, cropped_ymin, cropped_xmax, cropped_ymax), dim=-1
)
bbox = BoxList(cropped_box, (w, h), mode="xyxy")
# bbox._copy_extra_fields(self)
for k, v in self.extra_fields.items():
if not isinstance(v, torch.Tensor):
v = v.crop(box)
bbox.add_field(k, v)
return bbox.convert(self.mode)
# Tensor-like methods
def to(self, device):
bbox = BoxList(self.bbox.to(device), self.size, self.mode)
for k, v in self.extra_fields.items():
if hasattr(v, "to"):
v = v.to(device)
bbox.add_field(k, v)
return bbox
def __getitem__(self, item):
bbox = BoxList(self.bbox[item], self.size, self.mode)
for k, v in self.extra_fields.items():
bbox.add_field(k, v[item])
return bbox
def __len__(self):
return self.bbox.shape[0]
def clip_to_image(self, remove_empty=True):
TO_REMOVE = 1
x1s = self.bbox[:, 0].clamp(min=0, max=self.size[0] - TO_REMOVE)
y1s = self.bbox[:, 1].clamp(min=0, max=self.size[1] - TO_REMOVE)
x2s = self.bbox[:, 2].clamp(min=0, max=self.size[0] - TO_REMOVE)
y2s = self.bbox[:, 3].clamp(min=0, max=self.size[1] - TO_REMOVE)
self.bbox = torch.stack((x1s, y1s, x2s, y2s), dim=-1)
if remove_empty:
box = self.bbox
keep = (box[:, 3] > box[:, 1]) & (box[:, 2] > box[:, 0])
return self[keep]
return self
def area(self):
if self.mode == 'xyxy':
TO_REMOVE = 1
box = self.bbox
area = (box[:, 2] - box[:, 0] + TO_REMOVE) * (box[:, 3] - box[:, 1] + TO_REMOVE)
elif self.mode == 'xywh':
box = self.bbox
area = box[:, 2] * box[:, 3]
else:
raise RuntimeError("Should not be here")
return area
def copy_with_fields(self, fields):
bbox = BoxList(self.bbox, self.size, self.mode)
if not isinstance(fields, (list, tuple)):
fields = [fields]
for field in fields:
bbox.add_field(field, self.get_field(field))
return bbox
def __repr__(self):
s = self.__class__.__name__ + "("
s += "num_boxes={}, ".format(len(self))
s += "image_width={}, ".format(self.size[0])
s += "image_height={}, ".format(self.size[1])
s += "mode={})".format(self.mode)
return s
@staticmethod
def concate_box_list(list_of_boxes):
boxes = torch.cat([i.bbox for i in list_of_boxes], dim = 0)
extra_fields_keys = list(list_of_boxes[0].extra_fields.keys())
extra_fields = {}
for key in extra_fields_keys:
extra_fields[key] = torch.cat([i.extra_fields[key] for i in list_of_boxes], dim = 0)
final = list_of_boxes[0].copy_with_fields(extra_fields_keys)
final.bbox = boxes
final.extra_fields = extra_fields
return final
@torch.jit.unused
def _onnx_clip_boxes_to_image(boxes, size):
# type: (Tensor, Tuple[int, int])
"""
Clip boxes so that they lie inside an image of size `size`.
Clip's min max are traced as constants. Use torch.min/max to WAR this issue
Arguments:
boxes (Tensor[N, 4]): boxes in (x1, y1, x2, y2) format
size (Tuple[height, width]): size of the image
Returns:
clipped_boxes (Tensor[N, 4])
"""
TO_REMOVE = 1
device = boxes.device
dim = boxes.dim()
boxes_x = boxes[..., 0::2]
boxes_y = boxes[..., 1::2]
boxes_x = torch.max(boxes_x, torch.tensor(0., dtype=torch.float).to(device))
boxes_x = torch.min(boxes_x, torch.tensor(size[1] - TO_REMOVE, dtype=torch.float).to(device))
boxes_y = torch.max(boxes_y, torch.tensor(0., dtype=torch.float).to(device))
boxes_y = torch.min(boxes_y, torch.tensor(size[0] - TO_REMOVE, dtype=torch.float).to(device))
clipped_boxes = torch.stack((boxes_x, boxes_y), dim=dim)
return clipped_boxes.reshape(boxes.shape)
if __name__ == "__main__":
bbox = BoxList([[0, 0, 10, 10], [0, 0, 5, 5]], (10, 10))
s_bbox = bbox.resize((5, 5))
print(s_bbox)
print(s_bbox.bbox)
t_bbox = bbox.transpose(0)
print(t_bbox)
print(t_bbox.bbox)
|