File size: 5,431 Bytes
708dec4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import os.path
from pathlib import Path
from typing import Any, Callable, Optional, Tuple

import torch
from maskrcnn_benchmark.structures.bounding_box import BoxList

from PIL import Image, ImageDraw
from torchvision.datasets.vision import VisionDataset

from .modulated_coco import ConvertCocoPolysToMask, has_valid_annotation


class CustomCocoDetection(VisionDataset):
    """Coco-style dataset imported from TorchVision.

        It is modified to handle several image sources



    Args:

        root_coco (string): Path to the coco images

        root_vg (string): Path to the vg images

        annFile (string): Path to json annotation file.

        transform (callable, optional): A function/transform that  takes in an PIL image

            and returns a transformed version. E.g, ``transforms.ToTensor``

        target_transform (callable, optional): A function/transform that takes in the

            target and transforms it.

        transforms (callable, optional): A function/transform that takes input sample and its target as entry

            and returns a transformed version.

    """

    def __init__(

            self,

            root_coco: str,

            root_vg: str,

            annFile: str,

            transform: Optional[Callable] = None,

            target_transform: Optional[Callable] = None,

            transforms: Optional[Callable] = None,

    ) -> None:
        super(CustomCocoDetection, self).__init__(root_coco, transforms, transform, target_transform)
        from pycocotools.coco import COCO

        self.coco = COCO(annFile)
        self.ids = list(sorted(self.coco.imgs.keys()))

        ids = []
        for img_id in self.ids:
            if isinstance(img_id, str):
                ann_ids = self.coco.getAnnIds(imgIds=[img_id], iscrowd=None)
            else:
                ann_ids = self.coco.getAnnIds(imgIds=img_id, iscrowd=None)
            anno = self.coco.loadAnns(ann_ids)
            if has_valid_annotation(anno):
                ids.append(img_id)
        self.ids = ids

        self.root_coco = root_coco
        self.root_vg = root_vg

    def __getitem__(self, index):
        """

        Args:

            index (int): Index



        Returns:

            tuple: Tuple (image, target). target is the object returned by ``coco.loadAnns``.

        """
        coco = self.coco
        img_id = self.ids[index]
        ann_ids = coco.getAnnIds(imgIds=img_id)
        target = coco.loadAnns(ann_ids)

        img_info = coco.loadImgs(img_id)[0]
        path = img_info["file_name"]
        dataset = img_info["data_source"]

        cur_root = self.root_coco if dataset == "coco" else self.root_vg
        img = Image.open(os.path.join(cur_root, path)).convert("RGB")
        if self.transforms is not None:
            img, target = self.transforms(img, target)

        return img, target

    def __len__(self):
        return len(self.ids)


class MixedDataset(CustomCocoDetection):
    """Same as the modulated detection dataset, except with multiple img sources"""

    def __init__(self,

                 img_folder_coco,

                 img_folder_vg,

                 ann_file,

                 transforms,

                 return_masks,

                 return_tokens,

                 tokenizer=None,

                 disable_clip_to_image=False,

                 no_mask_for_gold=False,

                 max_query_len=256,

                 **kwargs):
        super(MixedDataset, self).__init__(img_folder_coco, img_folder_vg, ann_file)
        self._transforms = transforms
        self.max_query_len = max_query_len
        self.prepare = ConvertCocoPolysToMask(return_masks, return_tokens, tokenizer=tokenizer, max_query_len=max_query_len)
        self.id_to_img_map = {k: v for k, v in enumerate(self.ids)}
        self.disable_clip_to_image = disable_clip_to_image
        self.no_mask_for_gold = no_mask_for_gold

    def __getitem__(self, idx):
        img, target = super(MixedDataset, self).__getitem__(idx)

        image_id = self.ids[idx]
        caption = self.coco.loadImgs(image_id)[0]["caption"]
        anno = {"image_id": image_id, "annotations": target, "caption": caption}
        anno["greenlight_span_for_masked_lm_objective"] = [(0, len(caption))]
        if self.no_mask_for_gold:
            anno["greenlight_span_for_masked_lm_objective"].append((-1, -1, -1))

        img, anno = self.prepare(img, anno)

        # convert to BoxList (bboxes, labels)
        boxes = torch.as_tensor(anno["boxes"]).reshape(-1, 4)  # guard against no boxes
        target = BoxList(boxes, img.size, mode="xyxy")
        classes = anno["labels"]
        target.add_field("labels", classes)
        if not self.disable_clip_to_image:
            num_boxes = len(boxes)
            target = target.clip_to_image(remove_empty=True)
            assert len(target.bbox) == num_boxes, "Box removed in MixedDataset!!!"

        if self._transforms is not None:
            img, target = self._transforms(img, target)

        # add additional property
        for ann in anno:
            target.add_field(ann, anno[ann])

        return img, target, idx

    def get_img_info(self, index):
        img_id = self.id_to_img_map[index]
        img_data = self.coco.imgs[img_id]
        return img_data