Spaces:
Sleeping
Sleeping
File size: 4,894 Bytes
0c4803b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import gradio as gr
import io
import logging
from llm_profiler import *
import sys
from contextlib import redirect_stdout
# 模型列表
model_names = [
"opt-1.3b",
"opt-6.7b",
"opt-13b",
"opt-66b",
"opt-175b",
"gpt2",
"gpt2-medium",
"gpt2-large",
"gpt2-xl",
"bloom-560m",
"bloom-7b",
"bloom-175b",
"llama-7b",
"llama-13b",
"llama-30b",
"llama-65b",
"llama2-13b",
"llama2-70b",
"internlm-20b",
"baichuan2-13b",
]
# GPU 列表
gpu_names = [
"t4-pcie-15gb",
"v100-pcie-32gb",
"v100-sxm-32gb",
"br104p",
"a100-pcie-40gb",
"a100-sxm-40gb",
"a100-pcie-80gb",
"a100-sxm-80gb",
"910b-64gb",
"h100-sxm-80gb",
"h100-pcie-80gb",
"a30-pcie-24gb",
"a30-sxm-24gb",
"a40-pcie-48gb",
]
# 创建一个日志处理器,将日志消息写入 StringIO 对象
class StringHandler(logging.Handler):
def __init__(self):
super().__init__()
self.stream = io.StringIO()
self.setFormatter(logging.Formatter("%(message)s"))
def emit(self, record):
self.stream.write(self.format(record) + "\n")
def get_value(self):
return self.stream.getvalue()
# 创建一个日志记录器并添加 StringHandler
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
string_handler = StringHandler()
logger.addHandler(string_handler)
def gradio_interface(
model_name="llama2-70b",
gpu_name: str = "t4-pcie-15gb",
bytes_per_param: int = BYTES_FP16,
batch_size_per_gpu: int = 2,
seq_len: int = 300,
generate_len: int = 40,
ds_zero: int = 0,
dp_size: int = 1,
tp_size: int = 4,
pp_size: int = 1,
sp_size: int = 1,
use_kv_cache: bool = True,
layernorm_dtype_bytes: int = BYTES_FP16,
kv_cache_dtype_bytes: int = BYTES_FP16,
flops_efficiency: float = FLOPS_EFFICIENCY,
hbm_memory_efficiency: float = HBM_MEMORY_EFFICIENCY,
intra_node_memory_efficiency: float = INTRA_NODE_MEMORY_EFFICIENCY,
inter_node_memory_efficiency: float = INTER_NODE_MEMORY_EFFICIENCY,
mode: str = "inference",
print_flag: bool = True,
) -> list:
# 清空 StringIO 对象
string_handler.stream.seek(0)
string_handler.stream.truncate()
# 重定向 sys.stdout 到 StringHandler
original_stdout = sys.stdout
sys.stdout = string_handler.stream
# 调用你的推理函数
results = llm_profile_infer(
model_name,
gpu_name,
bytes_per_param,
batch_size_per_gpu,
seq_len,
generate_len,
ds_zero,
dp_size,
tp_size,
pp_size,
sp_size,
use_kv_cache,
layernorm_dtype_bytes,
kv_cache_dtype_bytes,
flops_efficiency,
hbm_memory_efficiency,
intra_node_memory_efficiency,
inter_node_memory_efficiency,
mode,
print_flag,
)
# 恢复 sys.stdout
sys.stdout = original_stdout
# 获取日志消息
log_output = string_handler.get_value()
# 返回推理结果和日志输出
return results, log_output
# 创建 Gradio 界面
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Dropdown(choices=model_names, label="Model Name", value="llama2-70b"),
gr.Dropdown(choices=gpu_names, label="GPU Name", value="a100-sxm-80gb"),
gr.Number(label="Bytes per Param", value=BYTES_FP16),
gr.Number(label="Batch Size per GPU", value=2),
gr.Number(label="Sequence Length", value=300),
gr.Number(label="Generate Length", value=40),
gr.Number(label="DS Zero", value=0),
gr.Number(label="DP Size", value=1),
gr.Number(label="TP Size", value=4),
gr.Number(label="PP Size", value=1),
gr.Number(label="SP Size", value=1),
gr.Checkbox(label="Use KV Cache", value=True),
gr.Number(label="Layernorm dtype Bytes", value=BYTES_FP16),
gr.Number(label="KV Cache dtype Bytes", value=BYTES_FP16),
gr.Number(label="FLOPS Efficiency", value=FLOPS_EFFICIENCY),
gr.Number(label="HBM Memory Efficiency", value=HBM_MEMORY_EFFICIENCY),
gr.Number(
label="Intra Node Memory Efficiency", value=INTRA_NODE_MEMORY_EFFICIENCY
),
gr.Number(
label="Inter Node Memory Efficiency", value=INTER_NODE_MEMORY_EFFICIENCY
),
gr.Radio(choices=["inference", "other_mode"], label="Mode", value="inference"),
gr.Checkbox(label="Print Flag", value=True),
],
outputs=[
gr.Textbox(label="Inference Results"), # 推理结果输出,带标签
gr.Textbox(label="Detailed Analysis"), # 日志输出,带标签
],
title="LLM Profiler",
description="Input parameters to profile your LLM.",
)
# 启动 Gradio 界面
iface.launch(auth=("xtrt-llm", "xtrt-llm"), share=False)
# iface.launch()
|