Spaces:
Runtime error
Runtime error
File size: 26,104 Bytes
916b126 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import random
import imageio
import os
import torch
import torch.nn as nn
from random import randint
from utils.loss_utils import l1_loss, ssim, tv_loss
from gaussian_renderer import render, network_gui
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams, GenerateCamParams, GuidanceParams
import math
import yaml
from torchvision.utils import save_image
import torchvision.transforms as T
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
sys.path.append('/root/yangxin/codebase/3D_Playground/GSDF')
def adjust_text_embeddings(embeddings, azimuth, guidance_opt):
#TODO: add prenerg functions
text_z_list = []
weights_list = []
K = 0
#for b in range(azimuth):
text_z_, weights_ = get_pos_neg_text_embeddings(embeddings, azimuth, guidance_opt)
K = max(K, weights_.shape[0])
text_z_list.append(text_z_)
weights_list.append(weights_)
# Interleave text_embeddings from different dirs to form a batch
text_embeddings = []
for i in range(K):
for text_z in text_z_list:
# if uneven length, pad with the first embedding
text_embeddings.append(text_z[i] if i < len(text_z) else text_z[0])
text_embeddings = torch.stack(text_embeddings, dim=0) # [B * K, 77, 768]
# Interleave weights from different dirs to form a batch
weights = []
for i in range(K):
for weights_ in weights_list:
weights.append(weights_[i] if i < len(weights_) else torch.zeros_like(weights_[0]))
weights = torch.stack(weights, dim=0) # [B * K]
return text_embeddings, weights
def get_pos_neg_text_embeddings(embeddings, azimuth_val, opt):
if azimuth_val >= -90 and azimuth_val < 90:
if azimuth_val >= 0:
r = 1 - azimuth_val / 90
else:
r = 1 + azimuth_val / 90
start_z = embeddings['front']
end_z = embeddings['side']
# if random.random() < 0.3:
# r = r + random.gauss(0, 0.08)
pos_z = r * start_z + (1 - r) * end_z
text_z = torch.cat([pos_z, embeddings['front'], embeddings['side']], dim=0)
if r > 0.8:
front_neg_w = 0.0
else:
front_neg_w = math.exp(-r * opt.front_decay_factor) * opt.negative_w
if r < 0.2:
side_neg_w = 0.0
else:
side_neg_w = math.exp(-(1-r) * opt.side_decay_factor) * opt.negative_w
weights = torch.tensor([1.0, front_neg_w, side_neg_w])
else:
if azimuth_val >= 0:
r = 1 - (azimuth_val - 90) / 90
else:
r = 1 + (azimuth_val + 90) / 90
start_z = embeddings['side']
end_z = embeddings['back']
# if random.random() < 0.3:
# r = r + random.gauss(0, 0.08)
pos_z = r * start_z + (1 - r) * end_z
text_z = torch.cat([pos_z, embeddings['side'], embeddings['front']], dim=0)
front_neg_w = opt.negative_w
if r > 0.8:
side_neg_w = 0.0
else:
side_neg_w = math.exp(-r * opt.side_decay_factor) * opt.negative_w / 2
weights = torch.tensor([1.0, side_neg_w, front_neg_w])
return text_z, weights.to(text_z.device)
def prepare_embeddings(guidance_opt, guidance):
embeddings = {}
# text embeddings (stable-diffusion) and (IF)
embeddings['default'] = guidance.get_text_embeds([guidance_opt.text])
embeddings['uncond'] = guidance.get_text_embeds([guidance_opt.negative])
for d in ['front', 'side', 'back']:
embeddings[d] = guidance.get_text_embeds([f"{guidance_opt.text}, {d} view"])
embeddings['inverse_text'] = guidance.get_text_embeds(guidance_opt.inverse_text)
return embeddings
def guidance_setup(guidance_opt):
if guidance_opt.guidance=="SD":
from guidance.sd_utils import StableDiffusion
guidance = StableDiffusion(guidance_opt.g_device, guidance_opt.fp16, guidance_opt.vram_O,
guidance_opt.t_range, guidance_opt.max_t_range,
num_train_timesteps=guidance_opt.num_train_timesteps,
ddim_inv=guidance_opt.ddim_inv,
textual_inversion_path = guidance_opt.textual_inversion_path,
LoRA_path = guidance_opt.LoRA_path,
guidance_opt=guidance_opt)
else:
raise ValueError(f'{guidance_opt.guidance} not supported.')
if guidance is not None:
for p in guidance.parameters():
p.requires_grad = False
embeddings = prepare_embeddings(guidance_opt, guidance)
return guidance, embeddings
def training(dataset, opt, pipe, gcams, guidance_opt, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from, save_video):
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gcams, gaussians)
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset._white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device=dataset.data_device)
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
#
save_folder = os.path.join(dataset._model_path,"train_process/")
if not os.path.exists(save_folder):
os.makedirs(save_folder) # makedirs
print('train_process is in :', save_folder)
#controlnet
use_control_net = False
#set up pretrain diffusion models and text_embedings
guidance, embeddings = guidance_setup(guidance_opt)
viewpoint_stack = None
viewpoint_stack_around = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
if opt.save_process:
save_folder_proc = os.path.join(scene.args._model_path,"process_videos/")
if not os.path.exists(save_folder_proc):
os.makedirs(save_folder_proc) # makedirs
process_view_points = scene.getCircleVideoCameras(batch_size=opt.pro_frames_num,render45=opt.pro_render_45).copy()
save_process_iter = opt.iterations // len(process_view_points)
pro_img_frames = []
for iteration in range(first_iter, opt.iterations + 1):
#TODO: DEBUG NETWORK_GUI
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
if custom_cam != None:
net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer)["render"]
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
network_gui.send(net_image_bytes, guidance_opt.text)
if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
iter_start.record()
gaussians.update_learning_rate(iteration)
gaussians.update_feature_learning_rate(iteration)
gaussians.update_rotation_learning_rate(iteration)
gaussians.update_scaling_learning_rate(iteration)
# Every 500 its we increase the levels of SH up to a maximum degree
if iteration % 500 == 0:
gaussians.oneupSHdegree()
# progressively relaxing view range
if not opt.use_progressive:
if iteration >= opt.progressive_view_iter and iteration % opt.scale_up_cameras_iter == 0:
scene.pose_args.fovy_range[0] = max(scene.pose_args.max_fovy_range[0], scene.pose_args.fovy_range[0] * opt.fovy_scale_up_factor[0])
scene.pose_args.fovy_range[1] = min(scene.pose_args.max_fovy_range[1], scene.pose_args.fovy_range[1] * opt.fovy_scale_up_factor[1])
scene.pose_args.radius_range[1] = max(scene.pose_args.max_radius_range[1], scene.pose_args.radius_range[1] * opt.scale_up_factor)
scene.pose_args.radius_range[0] = max(scene.pose_args.max_radius_range[0], scene.pose_args.radius_range[0] * opt.scale_up_factor)
scene.pose_args.theta_range[1] = min(scene.pose_args.max_theta_range[1], scene.pose_args.theta_range[1] * opt.phi_scale_up_factor)
scene.pose_args.theta_range[0] = max(scene.pose_args.max_theta_range[0], scene.pose_args.theta_range[0] * 1/opt.phi_scale_up_factor)
# opt.reset_resnet_iter = max(500, opt.reset_resnet_iter // 1.25)
scene.pose_args.phi_range[0] = max(scene.pose_args.max_phi_range[0] , scene.pose_args.phi_range[0] * opt.phi_scale_up_factor)
scene.pose_args.phi_range[1] = min(scene.pose_args.max_phi_range[1], scene.pose_args.phi_range[1] * opt.phi_scale_up_factor)
print('scale up theta_range to:', scene.pose_args.theta_range)
print('scale up radius_range to:', scene.pose_args.radius_range)
print('scale up phi_range to:', scene.pose_args.phi_range)
print('scale up fovy_range to:', scene.pose_args.fovy_range)
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getRandTrainCameras().copy()
C_batch_size = guidance_opt.C_batch_size
viewpoint_cams = []
images = []
text_z_ = []
weights_ = []
depths = []
alphas = []
scales = []
text_z_inverse =torch.cat([embeddings['uncond'],embeddings['inverse_text']], dim=0)
for i in range(C_batch_size):
try:
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
except:
viewpoint_stack = scene.getRandTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
#pred text_z
azimuth = viewpoint_cam.delta_azimuth
text_z = [embeddings['uncond']]
if guidance_opt.perpneg:
text_z_comp, weights = adjust_text_embeddings(embeddings, azimuth, guidance_opt)
text_z.append(text_z_comp)
weights_.append(weights)
else:
if azimuth >= -90 and azimuth < 90:
if azimuth >= 0:
r = 1 - azimuth / 90
else:
r = 1 + azimuth / 90
start_z = embeddings['front']
end_z = embeddings['side']
else:
if azimuth >= 0:
r = 1 - (azimuth - 90) / 90
else:
r = 1 + (azimuth + 90) / 90
start_z = embeddings['side']
end_z = embeddings['back']
text_z.append(r * start_z + (1 - r) * end_z)
text_z = torch.cat(text_z, dim=0)
text_z_.append(text_z)
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
render_pkg = render(viewpoint_cam, gaussians, pipe, background,
sh_deg_aug_ratio = dataset.sh_deg_aug_ratio,
bg_aug_ratio = dataset.bg_aug_ratio,
shs_aug_ratio = dataset.shs_aug_ratio,
scale_aug_ratio = dataset.scale_aug_ratio)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
depth, alpha = render_pkg["depth"], render_pkg["alpha"]
scales.append(render_pkg["scales"])
images.append(image)
depths.append(depth)
alphas.append(alpha)
viewpoint_cams.append(viewpoint_cams)
images = torch.stack(images, dim=0)
depths = torch.stack(depths, dim=0)
alphas = torch.stack(alphas, dim=0)
# Loss
warm_up_rate = 1. - min(iteration/opt.warmup_iter,1.)
guidance_scale = guidance_opt.guidance_scale
_aslatent = False
if iteration < opt.geo_iter or random.random()< opt.as_latent_ratio:
_aslatent=True
if iteration > opt.use_control_net_iter and (random.random() < guidance_opt.controlnet_ratio):
use_control_net = True
if guidance_opt.perpneg:
loss = guidance.train_step_perpneg(torch.stack(text_z_, dim=1), images,
pred_depth=depths, pred_alpha=alphas,
grad_scale=guidance_opt.lambda_guidance,
use_control_net = use_control_net ,save_folder = save_folder, iteration = iteration, warm_up_rate=warm_up_rate,
weights = torch.stack(weights_, dim=1), resolution=(gcams.image_h, gcams.image_w),
guidance_opt=guidance_opt,as_latent=_aslatent, embedding_inverse = text_z_inverse)
else:
loss = guidance.train_step(torch.stack(text_z_, dim=1), images,
pred_depth=depths, pred_alpha=alphas,
grad_scale=guidance_opt.lambda_guidance,
use_control_net = use_control_net ,save_folder = save_folder, iteration = iteration, warm_up_rate=warm_up_rate,
resolution=(gcams.image_h, gcams.image_w),
guidance_opt=guidance_opt,as_latent=_aslatent, embedding_inverse = text_z_inverse)
#raise ValueError(f'original version not supported.')
scales = torch.stack(scales, dim=0)
loss_scale = torch.mean(scales,dim=-1).mean()
loss_tv = tv_loss(images) + tv_loss(depths)
# loss_bin = torch.mean(torch.min(alphas - 0.0001, 1 - alphas))
loss = loss + opt.lambda_tv * loss_tv + opt.lambda_scale * loss_scale #opt.lambda_tv * loss_tv + opt.lambda_bin * loss_bin + opt.lambda_scale * loss_scale +
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if opt.save_process:
if iteration % save_process_iter == 0 and len(process_view_points) > 0:
viewpoint_cam_p = process_view_points.pop(0)
render_p = render(viewpoint_cam_p, gaussians, pipe, background, test=True)
img_p = torch.clamp(render_p["render"], 0.0, 1.0)
img_p = img_p.detach().cpu().permute(1,2,0).numpy()
img_p = (img_p * 255).round().astype('uint8')
pro_img_frames.append(img_p)
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
training_report(tb_writer, iteration, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background))
if (iteration in testing_iterations):
if save_video:
video_path = video_inference(iteration, scene, render, (pipe, background))
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
# Densification
if iteration < opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold)
if iteration % opt.opacity_reset_interval == 0: #or (dataset._white_background and iteration == opt.densify_from_iter)
gaussians.reset_opacity()
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene._model_path + "/chkpnt" + str(iteration) + ".pth")
if opt.save_process:
imageio.mimwrite(os.path.join(save_folder_proc, "video_rgb.mp4"), pro_img_frames, fps=30, quality=8)
return video_path
def prepare_output_and_logger(args):
if not args._model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args._model_path = os.path.join("./output/", args.workspace)
# Set up output folder
print("Output folder: {}".format(args._model_path))
os.makedirs(args._model_path, exist_ok = True)
# copy configs
if args.opt_path is not None:
os.system(' '.join(['cp', args.opt_path, os.path.join(args._model_path, 'config.yaml')]))
with open(os.path.join(args._model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args._model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs):
if tb_writer:
tb_writer.add_scalar('iter_time', elapsed, iteration)
# Report test and samples of training set
if iteration in testing_iterations:
save_folder = os.path.join(scene.args._model_path,"test_six_views/{}_iteration".format(iteration))
if not os.path.exists(save_folder):
os.makedirs(save_folder) # makedirs 创建文件时如果路径不存在会创建这个路径
print('test views is in :', save_folder)
torch.cuda.empty_cache()
config = ({'name': 'test', 'cameras' : scene.getTestCameras()})
if config['cameras'] and len(config['cameras']) > 0:
for idx, viewpoint in enumerate(config['cameras']):
render_out = renderFunc(viewpoint, scene.gaussians, *renderArgs, test=True)
rgb, depth = render_out["render"],render_out["depth"]
if depth is not None:
depth_norm = depth/depth.max()
save_image(depth_norm,os.path.join(save_folder,"render_depth_{}.png".format(viewpoint.uid)))
image = torch.clamp(rgb, 0.0, 1.0)
save_image(image,os.path.join(save_folder,"render_view_{}.png".format(viewpoint.uid)))
if tb_writer:
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.uid), image[None], global_step=iteration)
print("\n[ITER {}] Eval Done!".format(iteration))
if tb_writer:
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
torch.cuda.empty_cache()
def video_inference(iteration, scene : Scene, renderFunc, renderArgs):
sharp = T.RandomAdjustSharpness(3, p=1.0)
save_folder = os.path.join(scene.args._model_path,"videos/{}_iteration".format(iteration))
if not os.path.exists(save_folder):
os.makedirs(save_folder) # makedirs
print('videos is in :', save_folder)
torch.cuda.empty_cache()
config = ({'name': 'test', 'cameras' : scene.getCircleVideoCameras()})
if config['cameras'] and len(config['cameras']) > 0:
img_frames = []
depth_frames = []
print("Generating Video using", len(config['cameras']), "different view points")
for idx, viewpoint in enumerate(config['cameras']):
render_out = renderFunc(viewpoint, scene.gaussians, *renderArgs, test=True)
rgb,depth = render_out["render"],render_out["depth"]
if depth is not None:
depth_norm = depth/depth.max()
depths = torch.clamp(depth_norm, 0.0, 1.0)
depths = depths.detach().cpu().permute(1,2,0).numpy()
depths = (depths * 255).round().astype('uint8')
depth_frames.append(depths)
image = torch.clamp(rgb, 0.0, 1.0)
image = image.detach().cpu().permute(1,2,0).numpy()
image = (image * 255).round().astype('uint8')
img_frames.append(image)
#save_image(image,os.path.join(save_folder,"lora_view_{}.jpg".format(viewpoint.uid)))
# Img to Numpy
imageio.mimwrite(os.path.join(save_folder, "video_rgb_{}.mp4".format(iteration)), img_frames, fps=30, quality=8)
if len(depth_frames) > 0:
imageio.mimwrite(os.path.join(save_folder, "video_depth_{}.mp4".format(iteration)), depth_frames, fps=30, quality=8)
print("\n[ITER {}] Video Save Done!".format(iteration))
torch.cuda.empty_cache()
return os.path.join(save_folder, "video_rgb_{}.mp4".format(iteration))
def args_parser(default_opt=None):
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
parser.add_argument('--opt', type=str, default=default_opt)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_ratio", type=int, default=5) # [2500,5000,7500,10000,12000]
parser.add_argument("--save_ratio", type=int, default=2) # [10000,12000]
parser.add_argument("--save_video", type=bool, default=False)
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument("--cuda", type=str, default='0')
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
gcp = GenerateCamParams(parser)
gp = GuidanceParams(parser)
args = parser.parse_args(sys.argv[1:])
os.environ["CUDA_VISIBLE_DEVICES"] = args.cuda
if args.opt is not None:
with open(args.opt) as f:
opts = yaml.load(f, Loader=yaml.FullLoader)
lp.load_yaml(opts.get('ModelParams', None))
op.load_yaml(opts.get('OptimizationParams', None))
pp.load_yaml(opts.get('PipelineParams', None))
gcp.load_yaml(opts.get('GenerateCamParams', None))
gp.load_yaml(opts.get('GuidanceParams', None))
lp.opt_path = args.opt
args.port = opts['port']
args.save_video = opts.get('save_video', True)
args.seed = opts.get('seed', 0)
args.device = opts.get('device', 'cuda')
# override device
gp.g_device = args.device
lp.data_device = args.device
gcp.device = args.device
return args, lp, op, pp, gcp, gp
def start_training(args, lp, op, pp, gcp, gp):
# save iterations
test_iter = [1] + [k * op.iterations // args.test_ratio for k in range(1, args.test_ratio)] + [op.iterations]
args.test_iterations = test_iter
save_iter = [k * op.iterations // args.save_ratio for k in range(1, args.save_ratio)] + [op.iterations]
args.save_iterations = save_iter
print('Test iter:', args.test_iterations)
print('Save iter:', args.save_iterations)
print("Optimizing " + lp._model_path)
# Initialize system state (RNG)
safe_state(args.quiet, seed=args.seed)
# Start GUI server, configure and run training
network_gui.init(args.ip, args.port)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
video_path = training(lp, op, pp, gcp, gp, args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args.save_video)
# All done
print("\nTraining complete.")
return video_path
if __name__ == "__main__":
args, lp, op, pp, gcp, gp = args_parser()
start_training(args, lp, op, pp, gcp, gp)
|