File size: 6,263 Bytes
916b126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use 
# under the terms of the LICENSE.md file.
#
# For inquiries contact  george.drettakis@inria.fr
#

import torch
import math
from diff_gaussian_rasterization import GaussianRasterizationSettings, GaussianRasterizer
from scene.gaussian_model import GaussianModel
from utils.sh_utils import eval_sh, SH2RGB
from utils.graphics_utils import fov2focal
import random


def render(viewpoint_camera, pc : GaussianModel, pipe, bg_color : torch.Tensor, scaling_modifier = 1.0, black_video = False,
           override_color = None, sh_deg_aug_ratio = 0.1, bg_aug_ratio = 0.3, shs_aug_ratio=1.0, scale_aug_ratio=1.0, test = False):
    """
    Render the scene. 
    
    Background tensor (bg_color) must be on GPU!
    """
 
    # Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
    screenspace_points = torch.zeros_like(pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda") + 0
    try:
        screenspace_points.retain_grad()
    except:
        pass

    if black_video:
        bg_color = torch.zeros_like(bg_color)
    #Aug
    if random.random() < sh_deg_aug_ratio and not test:
        act_SH = 0
    else:
        act_SH = pc.active_sh_degree

    if random.random() < bg_aug_ratio and not test:
        if random.random() < 0.5:
            bg_color = torch.rand_like(bg_color)
        else:
            bg_color = torch.zeros_like(bg_color)
        # bg_color = torch.zeros_like(bg_color)

    #bg_color = torch.zeros_like(bg_color)
    # Set up rasterization configuration
    tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
    tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
    try:
        raster_settings = GaussianRasterizationSettings(
            image_height=int(viewpoint_camera.image_height),
            image_width=int(viewpoint_camera.image_width),
            tanfovx=tanfovx,
            tanfovy=tanfovy,
            bg=bg_color,
            scale_modifier=scaling_modifier,
            viewmatrix=viewpoint_camera.world_view_transform,
            projmatrix=viewpoint_camera.full_proj_transform,
            sh_degree=act_SH,
            campos=viewpoint_camera.camera_center,
            prefiltered=False
        )
    except TypeError as e:
        raster_settings = GaussianRasterizationSettings(
            image_height=int(viewpoint_camera.image_height),
            image_width=int(viewpoint_camera.image_width),
            tanfovx=tanfovx,
            tanfovy=tanfovy,
            bg=bg_color,
            scale_modifier=scaling_modifier,
            viewmatrix=viewpoint_camera.world_view_transform,
            projmatrix=viewpoint_camera.full_proj_transform,
            sh_degree=act_SH,
            campos=viewpoint_camera.camera_center,
            prefiltered=False,
            debug=False
        )


    rasterizer = GaussianRasterizer(raster_settings=raster_settings)

    means3D = pc.get_xyz
    means2D = screenspace_points
    opacity = pc.get_opacity

    # If precomputed 3d covariance is provided, use it. If not, then it will be computed from
    # scaling / rotation by the rasterizer.
    scales = None
    rotations = None
    cov3D_precomp = None
    if pipe.compute_cov3D_python:
        cov3D_precomp = pc.get_covariance(scaling_modifier)
    else:
        scales = pc.get_scaling
        rotations = pc.get_rotation

    # If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
    # from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
    shs = None
    colors_precomp = None
    if colors_precomp is None:
        if pipe.convert_SHs_python:
            raw_rgb = pc.get_features.transpose(1, 2).view(-1, 3, (pc.max_sh_degree+1)**2).squeeze()[:,:3]
            rgb = torch.sigmoid(raw_rgb)
            colors_precomp = rgb
        else:
            shs = pc.get_features
    else:
        colors_precomp = override_color

    if random.random() < shs_aug_ratio and not test:
        variance = (0.2 ** 0.5) * shs
        shs = shs + (torch.randn_like(shs) * variance)

    # add noise to scales
    if random.random() < scale_aug_ratio and not test:
        variance = (0.2 ** 0.5) * scales / 4
        scales = torch.clamp(scales + (torch.randn_like(scales) * variance), 0.0)

    # Rasterize visible Gaussians to image, obtain their radii (on screen).

    rendered_image, radii, depth_alpha = rasterizer(
        means3D = means3D,
        means2D = means2D,
        shs = shs,
        colors_precomp = colors_precomp,
        opacities = opacity,
        scales = scales,
        rotations = rotations,
        cov3D_precomp = cov3D_precomp)
    depth, alpha = torch.chunk(depth_alpha, 2)
    # bg_train = pc.get_background
    # rendered_image = bg_train*alpha.repeat(3,1,1) + rendered_image
#     focal = 1 / (2 * math.tan(viewpoint_camera.FoVx / 2))  #torch.tan(torch.tensor(viewpoint_camera.FoVx) / 2) * (2. / 2
#     disparity = focal / (depth + 1e-9)
#     max_disp = torch.max(disparity) 
#     min_disp = torch.min(disparity[disparity > 0])
#     norm_disparity = (disparity - min_disp) / (max_disp - min_disp)
#     # Those Gaussians that were frustum culled or had a radius of 0 were not visible.
#     # They will be excluded from value updates used in the splitting criteria.
#     return {"render": rendered_image,
#             "depth": norm_disparity,

    focal = 1 / (2 * math.tan(viewpoint_camera.FoVx / 2))  
    disp = focal / (depth + (alpha * 10) + 1e-5)

    try:
        min_d = disp[alpha <= 0.1].min()
    except Exception:
        min_d = disp.min()

    disp = torch.clamp((disp - min_d) / (disp.max() - min_d), 0.0, 1.0)
    
    # Those Gaussians that were frustum culled or had a radius of 0 were not visible.
    # They will be excluded from value updates used in the splitting criteria.
    return {"render": rendered_image,
            "depth": disp,
            "alpha": alpha,
            "viewspace_points": screenspace_points,
            "visibility_filter" : radii > 0,
            "radii": radii,
            "scales": scales}