File size: 3,022 Bytes
916b126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67f1f3f
fdb7a14
916b126
 
 
 
 
 
 
36d51ec
 
916b126
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import gradio as gr
import numpy as np
from train import *

example_inputs = [[
        "A DSLR photo of a Rugged, vintage-inspired hiking boots with a weathered leather finish, best quality, 4K, HD.",
        "Rugged, vintage-inspired hiking boots with a weathered leather finish."
    ], [
        "a DSLR photo of a Cream Cheese Donut.",
        "a Donut."
    ], [
        "A durian, 8k, HDR.",
        "A durian"
    ], [
        "A pillow with huskies printed on it",
        "A pillow"
    ], [
        "A DSLR photo of a wooden car, super detailed, best quality, 4K, HD.",
        "a wooden car."
]]
example_outputs = [
    gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/boots.mp4'), autoplay=True),
    gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/Donut.mp4'), autoplay=True),
    gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/durian.mp4'), autoplay=True),
    gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/pillow_huskies.mp4'), autoplay=True),
    gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/wooden_car.mp4'), autoplay=True)
]

def main(prompt, init_prompt, negative_prompt, num_iter, CFG, seed):
    if [prompt, init_prompt] in example_inputs:
        return example_outputs[example_inputs.index([prompt, init_prompt])]
    args, lp, op, pp, gcp, gp = args_parser(default_opt=os.path.join(os.path.dirname(__file__), 'configs/white_hair_ironman.yaml'))
    gp.text = prompt
    gp.negative = negative_prompt
    if len(init_prompt) > 1: 
        gcp.init_shape = 'pointe' 
        gcp.init_prompt = init_prompt
    else:
        gcp.init_shape = 'sphere'
        gcp.init_prompt = '.'
    op.iterations = num_iter
    gp.guidance_scale = CFG
    gp.noise_seed = int(seed)
    lp.workspace = 'gradio_demo'
    video_path = start_training(args, lp, op, pp, gcp, gp)
    return gr.Video(value=video_path, autoplay=True)

with gr.Blocks() as demo:
    gr.Markdown("# <center>LucidDreamer: Towards High-Fidelity Text-to-3D Generation via Interval Score Matching</center>")
    gr.Markdown("<center>Yixun Liang*, Xin Yang*, Jiantao Lin, Haodong Li, Xiaogang Xu, Yingcong Chen** (*: Equal contribution; **: Corresponding author)</center>")
    gr.Markdown("<center>This Gradio space was developed by Haodong Li</center>")
    gr.Interface(fn=main, inputs=[gr.Textbox(lines=2, value="A portrait of IRONMAN, white hair, head, photorealistic, 8K, HDR.", label="Your prompt"),
            gr.Textbox(lines=1, value="a man head.", label="Point-E init prompt (optional)"),
            gr.Textbox(lines=2, value="unrealistic, blurry, low quality, out of focus, ugly, low contrast, dull, low-resolution.", label="Negative prompt (optional)"),
            gr.Slider(1000, 5000, value=5000, label="Number of iterations"),
            gr.Slider(7.5, 100, value=7.5, label="CFG"),
            gr.Number(value=0, label="Seed")], 
        outputs="playable_video",
        examples=example_inputs,
        cache_examples=True)
demo.launch()